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Abstract

We propose a new robust test to detect changes in the dependence structure
of a time series. The test is based on empirical autocovariances of a robust trans-
formation of the original time series. Because of the transformation we do not
require any finite moments of the original time series making the test especially
suitable for heavy tailed time series. We furthermore propose a lag weighting
scheme which puts emphasis on changes of the autocorrelation at smaller lags.
Our approach is compared to existing ones in some simulations.
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1 Introduction

Detecting changes in the dependence structure of a time series goes back to [34] and [22].
To the best of our knowledge the first test to detect a change in the dependence
structure where the possible time of change is not known a priori can be found in [33].
Since then a lot of alternatives have been proposed. In [23] estimated autocovariances
of subsamples are compared to the estimation based on the whole time series. For linear
models several tests have been proposed, see [3], [4], [2], [13] and [1]. CUSUM-type
tests to detect changes in one or several autocovariances have been derived in [5], [24]
and [14]. A test based on the auto-copula has been proposed in [7]. Tests which
check stationarity of the spectrum are presented in [30], [17] and [36] and a wavelet
periodogram is used in [26] and [8]. There are also proposals which compare local
estimates of the spectrum with a global estimation, see [37], [28], [29] [15] and [32].
Surprisingly little attention has been paid to robustness. We want to fill the gap with
a CUSUM type test based on robustified autocovariances. The testing procedure is
described in Section 2 and a small simulation study in Section 3 indicates the usefulness
of the proposed test.

2 Testing procedure

Denote X = X1, . . . , XT a one dimensional time series which is stationary under the
null-hypothesis. We assume in the following that X has a continuous marginal distribu-
tion and is strongly mixing with mixing coefficients (ak)k∈N fulfilling ak = O(k−1−ε) for
some ε > 0. Strong mixing was first introduced in [35] and describes how fast the de-
pendence between two observations decreases as the time lag between them increases,
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see [6] for more details. We only want to emphasize here that a broad class of time
series models is strongly mixing, like linear and GARCH processes with continuously
distributed innovations, see [9] and [25].
We want to test whether the autocorrelation function of X stays the same, concentrat-
ing on the first p lags. We follow the approach of [16] and use bounded transformations.
Before using them, the observations need to be properly standardized. Denote there-
fore by µ̂ the sample median and by σ̂ the sample MAD of X, and µ and σ their
theoretical counterparts. Then we define

Ŷi = ψ

(
Xi − µ̂
σ̂

)
and Yi = ψ

(
Xi − µ
σ

)
, where ψ =


−k x < −k
x |x| ≤ k

k x > k

denotes the Huber-ψ function. This function was originally introduced for location
estimation in [18] and basically downweights the influence of observations with large
absolute values by shrinking them to more plausible values, namely −k respectively
k. The tuning-coefficient k determines the robustness of the test. A larger value of k
is favourable under Gaussian time series whereas a smaller k is needed if the data is
corrupted or heavy tailed. In [19] k = 1.5 is recommended as a compromise.
In the following we derive a CUSUM type test based on the Huber-transformed time
series. Denote therefore S

(l)
k =

∑k
t=1 ŶiŶi+l, then we look at
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k=1,...,T̃
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where w1, . . . , wp > 0 and T̃ = T − p. Here are some remarks with regard to RT :

• Technically RT tests the following hypothesis

H0 :

 Cov(Y1, Y2)
...

Cov(Y1, Yp+1)

 = . . . =

Cov(YT−p, YT−p+1)
...

Cov(YT−p, YT )

 vs.

H1 : ∃k < T :

Cov(Yk−p, Yk−p+1)
...

Cor(Yk−p, Yk)

 6=
Cor(Yk, Yk+1)

...
Cor(Yk, Yp+k)

 .

This is not equivalent to a test for a stationary dependence structure. For example
RT will have problems to detect changes in the tail dependence, since extreme
values are downweighted by ψ.

• We decided against calculating real robust correlations by standardizing S
(j)
k by

S
(0)
k respectively S

(0)

T̃
for j = 1, . . . , p. Note that we already standardize our

observations by σ̂. So there is no mandatory need to standardize S
(j)
k , too.
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• The choice of p is crucial for the power of the test. If there is only a change in
the first lag a large p only adds noise and can mask the change point. On the
other hand if one chooses p to small one cannot detect changes in the higher lags.
Furthermore one has to keep in mind that the estimation of Σ gets very poor if
p is large compared to T̃ . As a rule of thumb use p < bT̃ /20c.
• In the multivariate context it is common and beneficial to use the quadratic

form with respect to Σ, the asymptotic long run variance covariance matrix of
S

(1)

T̃
, . . . , S

(p)

T̃
. In this case RT gets affine invariant. However, in the time series

context this property is not desirable. The weights w1, . . . , wp gives us more flex-
ibility. Usually one would choose descending weights to smooth the transition
between lags of the acf where one can detect a change j = 1, . . . , p to those ne-
glected j > p. If there is only a change in the first autocorrelation and one chooses
p to large the change could be masked by the noise from the other autocorrela-
tions. Descending weights somehow counteract this problem. Without further
knowledge we suggest using wi = 1− (i− 1)/p for i = 1, . . . , p. A disadvantage of
using weights instead of Σ is that RT depends on the actual dependence structure
of X. Therefore one cannot use tabulated asymptotical critical values. However,
one can approximate the distribution of RT by sampling Gaussian processes with
the estimated covariance structure.

Now we describe how one can approximate the distribution of RT under the null-
hypothesis. Under the above assumptions one can use Theorem 1 of [16]. It is not
explicitly stated there but effectively proved in Proposition 1 and 2 that

1√
T̃

[
S

(1)

bT̃ xc −
bT̃ xc
T̃

S
(1)

T̃
, . . . , S

(p)

bT̃ xc −
bT̃ xc
T̃

S
(p)

T̃

]
x∈[0,1]

w→ [BB(x)]x∈[0,1]

where [B(x)]x∈[0,1] is a Gaussian process with mean function g(x) = 0 and covariance
function γ(x, y) = x(1 − y)Σ for 0 ≤ x ≤ y ≤ 1. Here, Σ is the asymptotic long run
covariance matrix defined by

Σ =
∞∑

h=−∞
Cov


 Y1Y2

...
Y1Y1+p

 ,
 Y1+hY2+h

...
Y1+hY1+p+h


 .

Proposition 3 in [16] states that Σ can be consistently estimated by a kernel estimator.
Denote therefore bT̃ ≥ 0 a bandwidth and k : R → [−1, 1] a kernel function. Then Σ̂
with the elements

Σ̂[i,j] =
1

T

T̃∑
t=1

T̃∑
s=1

(ŶsŶs+i − S(i)

T̃
)(ŶtŶt+j − S(j)

T̃
)k

( |s− t|
bT̃

)
is the related kernel estimator. Simulations indicate that the flat-top kernel

k(x) =


1 0 ≤ |x| ≤ 0.5

2− 2|x| 0.5 < |x| ≤ 1

0 |x| > 1
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proposed [31] in works well together with bT = T̃
1
3 under autoregressive processes of

order 1. One can generate random variables R̃
(i)
T , i = 1, . . . ,m, which have asymptoti-

cally the same distribution as RT under the null-hypothesis by the following algorithm:

• generate p · T̃ independent standard normal random variables and store them in
a T̃ × p matrix Z

• reproduce the cross sectional dependence by multiplying Z with L of the Cholesky
decomposition Σ̂ = LLT : Set V = Z · L

• calculate the weighted test statistic

R̃T =
1

T
max

k=1,...,T̃

(
k∑
t=1

V[t,] −
k

T̃

T∑
t=1

V[t,]

)
W

(
k∑
t=1

V[t,] −
k

T̃

T∑
t=1

V[t,]

)T

By this algorithm one can generate random variables to calculate approximate p-values
very fast. We recommend using a modified Cholesky decomposition to safeguard
against numeric instabilities which could arise especially if T is small compared to
p. In our simulations we used the algorithm proposed in [38].

3 Simulations

We want to assess our approach in a small simulation study. We compare our method
with tests for second order stationarity which are available in R, namely two wavelet
based tests [26] and [10], which are implemented in the packages [27] respectively [11],
and a revised version of the ANOVA test originally proposed in [33], which is imple-
mented in the package [12]. We abbreviate these tests by Wav, Rpar and Anova. Note
that all these methods are constructed with multiple break points in mind, so we expect
our method to perform comparatively well in the one change-point setting. Usually we
set p = 3 and use the abbreviation HCov if we use k = 1.5 and Cov if we use k = 1000,
which is effectively a covariance based test and not robust.
First we evaluate the behaviour under the null hypotheses. We look at AR(1) models
Xt = ρXt−1 + εt for t = 1, . . . , T with parameters ρ ∈ {0, 0.8}, different distributions
for the innovations (εt)t=1,...,T , namely the standard normal and a t-distribution with
3 degrees of freedom, and different length T ∈ {128, 256, 512}. Results are based on
10000 repetitions and summarized in Table 1. We can see that HCov holds its size very
well under serial dependence and heavy tails, whereas Wave, Rpar and to some degree
also Cov have problems in the later case. Surprisingly Anova needs at least T = 256
to work well.

To asses power under H1 we look at Xt =

{
εt, t = 1, . . . , 128

0.3Xt−1 + εt, t = 129, . . . , 256
. Here the

autocorrelation function changes from ρ(k) = 0 to ρ(k) = 0.3k for k ∈ N. We use
t-distributions with different degrees of freedom to investigate the influence of heavy
tails. Results based on 16000 repetitions can be seen in Figure 1 on the left. The
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Figure 1: Empirical power under a change from independent observations to an AR(1)
model with t distributed innovations with various degrees of freedom (left) and a change
to an MA(r) model with normal innovations (right).

Table 1: Empirical size in percent under AR(1) models with different ρ, normal and t3
distributed innovations and various time series lengths T at a nominal level of 0.05.

N(0,1) t3
ρ 0 0.8 0 0.8
T 128 256 512 128 256 512 128 256 512 128 256 512
Cov 3 4 5 2 3 4 4 6 7 2 2 3
HCov 3 4 5 3 4 4 3 4 5 3 3 4
Wav 1 3 4 2 4 4 8 29 34 6 23 27
Rpar 5 6 7 5 6 6 46 62 76 44 61 76
Anova 67 6 6 52 14 10 53 3 3 54 11 7
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robust test HCov dominates its competitors for df = 10 and even gains power as df
decreases. This could be a result of good leverage points. We see that the wavelet
based tests have a higher power at some point, though this is completely driven by
their anticonservatism under the null-hypothesis.
Finally we want to evaluate the influence of the time-lag where the autocorrelation func-

tion changes and look at Xt =

{
εt t = 1, . . . , 128

εt + 0.8εt−r t = 129, . . . , 256
. Here the acf changes

from ρ(k) = 0 to ρ(k) = 0.8/(1 + 0.82)I{k=r} for k ∈ N. Results under normal inno-
vations and 16000 repetitions can be seen in Figure 1 at the right. Our tests with the
choice p = 3 can only detect changes of the acf at lag 1 and 2. We also run our tests
with p = 6 and noticed that the power for smaller lags deteriorates a little while we
can now detect changes up to lag 4. Apart from Rpar all tests loose power as the lag
of change r increases.
In summary our robust change-point test behaves well under linear models with and
without heavy tails. The choice of p is crucial and determines up to which lag changes
in the acf can be detected. In case of doubt one should choose it rather larger than
smaller to be able to detect changes in the acf at higher lags.
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