ESTIMATION OF CONDITIONAL SURVIVAL FUNCTION UNDER DEPENDENT RANDOM CENSORED DATA

A.A. Abdushukurov

Branch of Moscow State University in Tashkent named after M.V.Lomonosov Tashkent, UZBEKISTAN e-mail: a_abdushukurov@rambler.ru

Abstract

The aim of paper is considering the problem of estimation of conditional survival function in the case of right random censoring with presence of covariate. *Keywords:* data science, conditional survival function, right random censoring

Let us consider the case when the support of covariate C is the interval [0, 1] and we describe our results on fixed design points $0 \le x_1 \le x_2 \le ... \le x_n \le 1$ at which we consider responses (survival or failure times) $X_1, ..., X_n$ and censoring times $Y_1, ..., Y_n$ of identical objects, which are under study. These responses are independent and nonnegative random variables (r.v.-s) with conditional distribution function (d.f.) at $x_i, F_{x_i}(t) = P(X_i \le t/C_i = x_i)$. They are subjected to random right censoring, that is for X_i there is a censoring variable Y_i with conditional d.f. $G_{x_i}(t) = P(Y_i \le t/C_i = x_i)$ and at n-th stage of experiment the observed data is $S^{(n)} = \{(Z_i, \delta_i, C_i), 1 \le i \le n\}$, where $Z_i = min(X_i, Y_i), \delta_i = I(X_i \le Y_i)$ with I(A) denoting the indicator of event A. Note that in sample S^n r.v. X_i is observed only when $\delta_i = 1$. Commonly, in survival analysis independence between the r.v.-s X_i and Y_i conditional on the covariate C_i is assumed. But, in some practical situations, this assumption does not hold. Therefore, in this article we consider a dependence model in which dependence structure is described through copula function. So let

$$S_x(t_1, t_2) = P(X_x > t_1, Y_x > t_2), \ t_1, t_2 \ge 0,$$

the joint survival function of the response X_x and the censoring variable Y_x at x. Then the marginal survival functions are $S_x^X(t) = 1 - F_x(t) = S_x(t,0)$ and $S_x^Y(t) = 1 - G_x(t) = S_x(0,t), t \leq 0$. We suppose that the marginal d.f.-s F_x and G_x are continuous. Then according to the Theorem of Sclar (see, [1]), the joint survival function $S_x(t_1, t_2)$ can be expressed as

$$S_x(t_1, t_2) = C_x(S_x^X(t_1), S_x^X(t_2)), \ t_1, t_2 \ge 0,$$
(1)

where $C_x(u, v)$ is a known copula function depending on x, S_x^X and S_x^Y in a general way. We consider estimator of d.f. F_x which is equivalent to the relative-risk power estimator [2,3] under independent censoring case.

Assume that at the fixed design value $x \in (0, 1), C_x$ in (1) is Archimedean copula, i.e.

$$S_x(t_1, t_2) = \varphi_x^{-1}(\varphi_x(S_x^X(t_1)) + \varphi_x(S_x^Y(t_2))), \ t_1, t_2 \ge 0,$$
(2)

where, for each $x, \varphi_x : [0, 1] \to [0, +\infty]$ is a known continuous, convex, strictly decreasing function with $\varphi_x(1) = 0$. We assume that copula generator function φ_x is strict, i.e. $\varphi_x(0) = \infty$ and φ_x^{-1} is a inverse of φ_x . From (2), it follows that

$$P(Z_x > t) = 1 - H_x(t) = \overline{H_x(t)} = S_x^{Z}(t) = S_x(t, t) =$$

= $\varphi_x^{-1}(\varphi_x(S_x^X(t)) + \varphi_x(S_x^Y(t))), t \ge 0,$ (3)

Let $H_x^{(1)}(t) = P(Z_x \leq t, \delta_x = 1)$ be a subdistribution function and $\Lambda_x(t)$ is crude hazard function of r.v. X_x subjecting to censoring by Y_x ,

$$\Lambda_x(dt) = \frac{P(X_x \in dt, X_x \le Y_x)}{P(X_x \ge t, Y_x \ge t)} = \frac{H_x^{(1)}(dt)}{S_x^Z(t-)}.$$
(4)

From (4) one can obtain following expression of survival function S_x^X :

$$S_x^X(t) = \varphi_x^{-1} \left[-\int_0^t \varphi_x'(S_x^Z(u)) dH_x^{(1)}(u) \right], \ t \ge 0.$$
(5)

In order to constructing the estimator of S_x^X according to representation (5), we introduce smoothed estimators of S_x^Z , $H_x^{(1)}$ and regularity conditions for them. We use the Gasser-Müller weights

$$w_{ni}(x,h_n) = \frac{1}{q_n(x,h_n)} \int_{x_{i-1}}^{x_i} \frac{1}{h_n} \pi(\frac{x-z}{h_n}) dz, \ i = 1, ..., n,$$
(6)

with

$$q_n(x,h_n) = \int_0^{x_n} \frac{1}{h_n} \pi(\frac{x-z}{h_n}) dz,$$

where $x_0 = 0$, π is a known probability density function (kernel) and $\{h_n, n \ge 1\}$ is a sequence of positive constants, tending to zero as $n \to \infty$, called bandwidth sequence. Let's introduce the weighted estimators of H_x, S_x^Z and $H_x^{(1)}$ respectively as

$$H_{xh}(t) = \sum_{i=1}^{n} w_{ni}(x, h_n) I(Z_i \le t), \ S_{xh}^Z(t) = 1 - H_{xh}(t),$$
$$H_{xh}^{(1)}(t) = \sum_{i=1}^{n} w_{ni}(x, h_n) I(Z_i \le t, \delta_i = 1).$$
(7)

Then by pluggin estimators (6) and (7) in (5) we obtained the following intermediate estimator of S_x^X :

$$S_{xh}^X(t) = 1 - F_{xh}(t) = \varphi_x^{-1} \left[-\int_0^t \varphi_x'(S_x^Z(u)) dH_x^{(1)}(u)\right], \ t \ge 0.$$

In this work we propose the next extended analogue of estimator introduced in [2,3]:

$$\widehat{S}_{xh}^X(t) = \varphi_x^{-1}[\varphi(S_{xh}^Z(t)) \cdot \mu_{xh}(t)] = 1 - \widehat{F}_{xh}(t), \qquad (8)$$

where $\mu_{xh}(t) = \varphi(S_{xh}^X(t)) / \varphi(\widetilde{S}_{xh}^Z(t)), \quad \varphi(S_{xh}^X(t)) = -\int_0^t \varphi'_x(S_{xh}^Z(u)) dH_{xh}^{(1)}(u),$ $\varphi(\widetilde{S}_{xh}^{Z}(t)) = -\int_{0}^{t} \varphi'_{x}(S_{xh}^{Z}(u)) dH_{xh}(u)$. In order to investigate the estimate (8) we introduce some conditions. For the design points $x_1, ..., x_n$, denote $\underline{\Delta}_n = \min_{1 \le i \le n} (x_i - i)$

 $x_{i-1}), \ \overline{\Delta_n} = \max_{1 \le i \le n} (x_i - x_{i-1}).$

For the kernel π , let $\|\pi\|_2^2 = \int_{-\infty}^{\infty} \pi^2(u) du$, $m_{\nu}(\pi) = \int_{-\infty}^{\infty} u^{\nu} \pi(u) du$, $\nu = 1, 2$. Moreover, we use next assumptions on the design and on the kernel function:

(A1) As $n \to \infty, x_n \to 1, \underline{\Delta}_n = O(\frac{1}{n}), \overline{\Delta}_n - \underline{\Delta}_n = o(\frac{1}{n}).$ (A2) π is a probability density function with compact support [-M, M] for some M > 00, with $m_1(\pi) = 0$ and $|\pi(u) - \pi(u')| \leq C(\pi)|u - u'|$, where $C(\pi)$ is some constant.

Let $T_{H_x} = inf\{t \ge 0 : H_x(t) = 1\}$. Then $T_{H_x} = min(T_{F_x}, T_{G_x})$. For our results we need some smoothnees conditions on functions $H_x(t)$ and $H_x^{(1)}(t)$. We formulate them for a general (sub)distribution function $N_x(t), 0 \le x \le 1, t \in R$ and for a fixed T > 0. (A3) $\frac{\partial^2}{\partial x^2} N_x(t) = \overset{..}{N}_x(t)$ exists and is continuous in $(x,t) \in [0,1] \times [0,T]$. (A4) $\frac{\partial^2}{\partial t^2} N_x(t) = N''_x(t)$ exists and is continuous in $(x,t) \in [0,1] \times [0,T]$. (A5) $\frac{\partial^2}{\partial x \partial t} N_x(t) = N'_x(t)$ exists and is continuous in $(x, t) \in [0, 1] \times [0, T]$. (A6) $\frac{\partial \varphi_x(u)}{\partial u} = \varphi'_x(u)$ and $\frac{\partial^2 \varphi_x(u)}{\partial u^2} = \varphi''_x(u)$ are Lipschitz in the *x*-direction with a bounded Lipschitz constant and $\frac{\partial^3 \varphi_x(u)}{\partial u^3} = \varphi''_x(u)$ exists and is continuous in $(x, u) \in [0, 1]$.

 $[0,1] \times (0,1].$

We derive an almost sure representation result with rate.

Theorem 1. Assume (A1), (A2), $H_x(t)$ and $H_x^{(1)}(t)$ satisfy (A3)-(A5) in [0, T] with $T < T_{H_x}$, φ_x satisfies (A6) and $h_n \to 0$, $\frac{logn}{nh_n} \to 0$, $\frac{nh_n^5}{logn} = O(1)$. Then, as $n \to \infty$,

$$\widehat{F}_{xh}(t) - F_x(t) = \sum_{i=1}^n w_{ni}(x, h_n) \Psi_{tx}(Z_i, \delta_i) + r_n(t),$$

where

$$\Psi_{tx}(Z_i, \delta_i) = \frac{-1}{\varphi'_x(S^X_x(t))} \left[\int_0^t \varphi''_x(S^Z_x(u)) (I(Z_i \le u) - H_x(u)) dH^{(1)}_x(u) - \varphi'_x(S^Z_x(t)) (I(Z_i \le t, \delta_i = 1) - H^{(1)}_x(t)) - \int_0^t \varphi''_x(S^Z_x(u)) (I(Z_i \le u, \delta_i = 1) - H^{(1)}_x(u)) dH_x(u) \right],$$

and

$$\sup_{0 \le t \le T} |r_n(t)| \stackrel{a.s.}{=} O(\left(\frac{\log n}{nh_n}\right)^{3/4}).$$

The weak convergence of the empirical process $(nh_n)^{1/2} \{\widehat{F}_{xh}(\cdot) - F_x(\cdot)\}$ in the space $l^{\infty}[0,T]$ of uniformly bounded functions on [0,T], endowed with the uniform topology is the contents of the next theorem.

Theorem 2. Assume (A1), (A2), $H_x(t)$ and $H_x^{(1)}(t)$ satisfy (A3)-(A5) in [0, T] with $T < T_{H_x}$, and that φ_x satisfies (A6). (I) If $nh_n^5 \to 0$ and $\frac{(logn)^3}{nh_n} \to 0$, then, as $n \to \infty$,

$$(nh_n)^{1/2}\{\widehat{F}_{xh}(\cdot) - F_x(\cdot)\} \Rightarrow \mathbf{W}_x(\cdot) \text{ in } l^{\infty}[0,T].$$

(II) If $h_n = C n^{-1/5}$ for some C > 0, then, as $n \to \infty$,

$$(nh_n)^{1/2}\{\widehat{F}_{xh}(\cdot) - F_x(\cdot)\} \Rightarrow \mathbf{W}_x^*(\cdot) \text{ in } l^\infty[0,T],$$

where $\mathbf{W}_{x}(\cdot)$ and $\mathbf{W}_{x}^{*}(\cdot)$ are Gaussian processes with means

$$E\mathbf{W}_x(t) = 0, E\mathbf{W}_x^*(t) = a_x(t),$$

and same covariance

$$Cov(\mathbf{W}_x(t), \mathbf{W}_x(s)) = Cov(\mathbf{W}_x^*(t), \mathbf{W}_x^*(s)) = \Gamma_x(t, s),$$

with

$$a_x(t) = \frac{-C^{5/2}m_2(\pi)}{2\varphi'_x(S^X_x(t))} \int_0^t \left[\varphi''_x(S^Z_x(u))\ddot{H}_x(u)dH^{(1)}_x(u) - \varphi'_x(S^Z_x(u))dH^{(1)}_x(u)\right],$$

and

$$\begin{split} \Gamma_x(t,s) &= \frac{\|\pi\|_2^2}{\varphi_x'(S_x^X(t))\varphi_x'(S_x^X(s))} \{ \int_0^{\min(t,s)} \left(\varphi_x'(S_x^Z(z))\right)^2 dH_x^{(1)}(z) + \\ &+ \int_0^{\min(t,s)} \left[\varphi_x''(S_x^Z(w))S_x^Z(w) + \varphi_x'(S_x^Z(w))\right] \int_0^w \varphi_x''(S_x^Z(y)) dH_x^{(1)}(y) dH_x^{(1)}(w) + \\ &+ \int_0^{\min(t,s)} \varphi_x''(S_x^Z(w)) \int_w^{\max(t,s)} \left(\varphi_x''(S_x^Z(y))S_x^Z(y) + \varphi_x'(S_x^Z(y))\right) dH_x^{(1)}(y) dH_x^{(1)}(w) - \\ &- \int_0^t [\varphi_x''(S_x^Z(y))S_x^Z(y) + \varphi_x'(S_x^Z(y))] dH_x^{(1)}(y) \cdot \\ &\quad \cdot \int_0^s [\varphi_x''(S_x^Z(w))S_x^Z(w) + \varphi_x'(S_x^Z(w))] dH_x^{(1)}(w) \}. \end{split}$$

References

- [1] Nelsen R.B. (1999). An Introduction to Copulas. Springer, New York.
- [2] Abdushukurov A.A. (1998). Nonparametric estimation of distribution function based on relative risk function. *Commun. Statist.: Theory and Methods.* Vol. 27, No.8, pp. 1991-2012.
- [3] Abdushukurov A.A. (1999). On nonparametric estimation of reliability indices by censored samples. *Theory Probab. Appl.* Vol. bf 43, No. 1, pp. 3-11.