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Abstract

A fixed sample size procedure for selecting the ¢ best system components is
considered. The probability requirement is set to be satisfied under the indiffer-
ence zone formulation. In order to minimize the average losses from misclassifi-
cation, we use loss function which is sensitive to the number of misclassifications.
The upper bound of the corresponding risk is derived for location parameter dis-
tributions. The risk function for the Least Favorable Configuration is derived in
an integral form for a large class of distribution functions.
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1 Introduction

Consider the following replacement policy. Fixed number of system components should
be replaced by new ones. There are given k competing items and the goal is to select the
most reliable t out of them. The true values of the reliability parameters are not known
but they are estimated by a singe test. On the basis of test estimates X, ..., X, we
want to partition the set of item parameters 64,..., 60, into two disjoint subsets such
that the first subset contains the k — ¢t smallest #;, and the second subset contains the
remaining ¢ largest 0;, where 1 <t < k. We denote X(;) the observation corresponding
to ;. The parameters in the second subset are called “best”.

The natural single stage procedure selects t items with largest parameters on the
basis of parameter estimators [4]. The usual approach for this problem is in term of
probability of correct selection (PCS). The procedure used should guarantee that the
PCS is at least some specified value P* whenever the true parameter configuration lies
in some subset of parameter space. When the monotonicity property on PCS holds,
the problem is to find the parameter configuration for which PCS reaches its minimum.

In a decision theoretic approach, the formulation is in term of a loss function and
associated risk (average loss). Under a 0-1 loss function, the probability of a correct
selection and the risk p are connected through, PC'S = 1—p. Thus all decision theoretic
formulations in terms of risk can be translated into the “PCS-language”. More sensitive
loss functions will be discussed in this paper. Their construction is based on a metric
for partial rankings.

The optimum properties of the natural decision procedure for selecting the best
single population are derived by Bahadur and Goodman [3]. Lehmann [10], Eaton [7],
and Alam [1] have extended the results for more general problems and families of
distributions. The problem is further discussed by Gupta and Miescke [8], Gupta and
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Panchapakesan [9], Ng et al. [2]. The general partition problem stated by Bechhofer [4]
is to classify the set of populations into a fixed number of categories. The general case
is treated from a decision theoretic point of view by Sobel [12] and Sobel [13]. If the
risk is a monotone function, the problem of its evaluating is reduced to a problem of
determining the parameter configuration for which the risk is maximal.

2 Decision procedure

2.1 Natural Decision Procedure

Let X = (Xi,..., Xk) be estimators of the items unknown reliability parameter vector
0= (6y,...,0k) in aset O. It is assumed that X; has distribution function F(z — 6;).

The Natural Decision Procedure divides the coordinate values of 6 into two disjoint
subsets according to the ranking of the observed vector X. Denote A = {A} the action
space for the selection problem containing all partitions A = (A1, A2) of {1,..., k} where
A1 has k£ — t elements and A9 has t elements.

For each A = (A1, \2) € A, let
By={zex: x <z, forallie )\, je A}

For each = € x, let H(xz) = {\ € A : z € B,} and n(x) be the number of elements in
the set H(z) so that n(z) > 1. The decision rule ¢} (z) is defined by

. 1/n(z) if Xe H(x),
Palz) = { 0 if A¢ H(x).

Thus ¢ = {¢} }ren-

This decision function ¢* divides the parameters 64, ..., 6, into two ordered subsets.
The first subset contains the £ —t smallest parameters, and the second subset contains
the remaining t largest parameters. The procedure does not state any preferences
among members of the same subset.

After the ¢t best parameters have been selected, evaluation of the loss from incorrect
partitioning can be made. Let 0j;) < 0y < ... < 6 denote the ordered 0;, ¢ = 1,.. ., k.
We assume that it is not known which parameter is associated with 0.

The parameter 0, divides the parameters into two ordered subsets so that the
parameters 0, ..., 0y form the first subset, and the parameters Op_;41), ..., 0
form the second subset. When the parameters are selected using their true (unknown)
values, we say that a correct selection has been made. This partition of the parameters
is called the true one.

We require the usual type of invariant assumptions regarding sample space, ©, A
and F'(x; ). For more explicit treatment of symmetry and invariance see Lehmann [11].

2.2 Loss function

Let 1(6, \) denote the loss if we terminate selection with action A € A when 6 is the true
value of the parameter vector. Calculate n;; the number of items which are in the i
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category according the true partition and in the j** category according \ (i,j = 1,2).
Define the loss function by

2 2

00,0 =) lei — eilnag, (1)

i=1 j=1

where ¢; = (k —t)(k —t 4+ 1)/2 is the mean of the k — ¢t numbers in the first category
and ¢y = t(2k —t 4+ 1)/2 is the mean of the ¢ numbers in the second category of true
partition. Thus the loss function counts the number of misclassified parameters and
equals to two times the number of parameters which are among last ¢ largest and are
placed in the first subset by action .

The motivation for the use of the loss function (1) comes from a metric for partially
ranked data induced by Spearman’s footrule. Partial rankings from the same type
correspond a set of partitions which is a coset space of the permutation group. Metrics
on permutation group induce metrics on its cosets spaces which preserve the invariant
properties. Several such metrics for partial rankings are constructed by Critchlow [5].
The idea of using metrics on permutations in the decision theoretic formulation has
also been mentioned by Diaconis [6].

The function (1) computes the Spearman’s footrule distance between two partial
rankings using the “pseudo-ranks” ¢; and ¢; instead the ordinary ranks. The construc-
tion of {(#, A) implies that the loss function is a right invariant in the sense

107, A7) = 1(0, ).

2.3 Expected loss (risk)

Assuming that all partitions of the parameters are equally likely to observe, the risk
function for p € D is

p(",0) = B0, )] = > > |ei — ¢ [ENy;, (2)

i=1 j=1
where NN;; is the random variable corresponding to n;;.

Theorem 1. The risk function p(¢*,0) defined by could be expressed by

k k—t

p(e,0) = D Y P{Xm =Xy} (3)

m=k—t+1 [=1

2.4 Preference Zone and Least Favourable Configuration

The indifference Zone approach, proposed by Bechhofer [4], consists of dividing the pa-
rameter space into two regions, the so called Preference Zone (PZ) and its complement
the Indifference Zone. We discuss distributions with location parameter.
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Definition 1. For 0 < 0 < oo, the subset PZ € © defined by
PZ={0€0O: 8[k—t+1] — Q[k_ﬂ >0} (4)
is called the Preference Zone.

The procedure used should guarantee that the risk of decision ¢ asserted from the
observations is at most some specified value P* whenever 6 lies in PZ. So the Preference
Zone represents a subset of parameter values where we have a strong preference for a
correct selection. The Indifference Zone approach is directed towards the performance
of Natural Decision Procedure for configurations in the PZ.

The Least Favourable Configuration (LFC) of the parameters is that one from PZ
for which the risk reaches its maximum. For two-category problem with parameter of
location we prove in Theorem 3 that

LEC : {0y — Opp—t41) = 0; Op—srr) — Opp—g) = 0; Oy — O =0} . (5)
The risk p(p*,0) for LE'C' is expressed by (3) is
k—t

p(", LFC) = 1> P{Xp) = Xy}.

=1

3 Upper Bound of the Risk Function

Define

o H[m]—G[S], S:1,...,m—1;
s = G[S]—H[m], s=m+1,... k.

Then the following Theorem holds.

Theorem 2. For allm =k—t+1,...,k, the risk function p(©*,0) defined in (2) is a
strictly decreasing function in Ym.1, ..., Ymk—t 0Nd NONINCTEASING i1 Vin k—t41s - - - > Vi k
for any parameter configuration from the Preference Zone (4), where

Theorem 3. With LF'C defined in (5) we have
p(¢*,0) < p(e*, LFC)

for all parameter configurations from the Preference Zone (4).
Now, the risk function for LF'C is stated for the case k —t < t.
Theorem 4. The risk function p(¢*, LFC) for LFC defined in (5) is

k—t—y—1

> (k;& t) [F(a+08)]" [1=F (a+8)] " ]dF ().

m=0

The risk function p(p*,0) is decreasing in §. Thus we can choose ¢* to be the
smallest § > 0 such that p(¢*, LF'C)) < P*. For all 6 > §*, p(¢*,0) will be less than
P* for all parameter configurations (4) specified by 4.
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