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Abstract

Assuming that spatial data is generated by Gaussian random field (GRF), the
problem of classifying its observation into one of two populations is considered.
Populations are specified by the common regressors but different regression pa-
rameters. Authors concern with classification procedures associated with Bayes
discriminant function (BDF) and its sample version (SDF). The average of plug-
in and apparent correct classification rates is considered as performance measure
of classifier based on SDF. Various types of spatial data models for invasive
species (zebra mussels) distributed in the Curonian Lagoon are considered and
ranked by the defined criterion. Advanced models are proposed to the mapping
of presence and absence of zebra mussels in the Curonian Lagoon.
Keywords: spatial model, data science, linear classifier, Gaussian random field

1 Introduction

Classification of spatial data has been mentioned in the ecological literature, but lacks
full mathematical treatment and easily available algorithms and software. This paper
fills this gap by defining the method of statistical classification based on BDF by pro-
viding novel formulas and algorithms, which allows to evaluate the influence of spatial
information to the performance of proposed classifier. Performance of the classifier
based on SDF in the complete parametric uncertainty case is implemented by Ducin-
skas and Dreiziene (2011). Numerical comparison of the performances for different
spatial classification rules is performed by Berrett and Calder (2016). In the present
paper we focus on linear classification problem of GRF observation for the so-called
geostatistical model (GS) with continuous spatial index and directly specified paramet-
ric covariance functions. It should be noted that classification of spatial lattice data
modeled by conditionally autoregressive models is recently explored by Ducinskas and
Dreiziene (2018). The average of the plug-in and apparent correct classification rates
(AVER) is considered as an hybrid estimator for the classifiers based on SDF. These
are used in comparison and selection of the spatial linear models for spatial ecological
data. Spatial distribution and spread of invasive species (zebra mussels) in lagoons and
bays are interested a lot of ecologists (see, e.g. Zaiko, Daunys 2015). In the present
paper three spatial linear models for zebra mussels distributed in the Curonian Lagoon
are considered and compared by proposed performance measure.
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2 The Main Concepts and Definitions

In this paper we focus on classification of a single scalar GRF {Z(s) : s ∈ D ⊂
R2} observation, when training sample is given. The model of observation Z(s) in
population Ωl is Z(s) = x′(s)βl + ε(s), where x(s) is a q × 1 vector of non-random
regressors and βl is a q × 1 vector of parameters, l = 1, 2, and β1 6= β2. The error
term ε(s) is generated by zero-mean GRF {ε(s) : s ∈ D} with covariance function
σ(s, t) = cov(ε(s), ε(t)), for s, t ∈ D.

Suppose that {si ∈ D, i = 0, 1, . . . , n} is the set of spatial sites where the observa-
tions of GRF are taken. Indexing spatial sites by integers i.e. si = i, i = 0, 1, . . . , n,
denote the set of training sites by Sn = S(1) ∪ S(2), where S(1) = {1, 2, . . . , n1} and
S(2) = {n1 + 1, . . . , n1 + n2}, n = n1 + n2, are the subsets of Sn that contains nl ob-
servations of Z(s) from Ωl, l = 1, 2. The location of the observation to be classified is
indexed by {0}.

In what follows we use the notations Z(i) = Zi, ε(i) = εi, x(i) = xi, σij =
cov(Zi, Zj), i, j = 0, 1, . . . , n and ε = (ε1, . . . , εn)′, Z = (Z1, . . . , Zn)′. Define n-vector
c0 and n× n matrix Σ by c0 = (σ01, σ02, . . . , σ0n)′ and Σ = (σij, i, j = 1, . . . , n).

Put β′ = (β′1, β
′
2), α0 = Σ−1c0, and denote by X the n × 2q design matrix of

training sample Z. Then the training sample Z has multivariate Gaussian distribution
Z ∼ Nn(Xβ,Σ(θ)).

The main objective of this paper is to classify the single observation of scalar GRF
{Z(s) : s ∈ D ⊂ R2} at location s0 given training sample Z. Let z denote the
realization of Z. Then the conditional distribution of Z0 given Z = z in Ωl is Gaussian
with mean and variance

µ0
lz = E(Z0|Z = z; Ωl) = x′0βl + α′0(z −Xβ), (1)

σ2
0z(θ) = σ00 − c′0Σ−1c0. (2)

For geostatistical data, spatial index s is assumed to vary continuously throughout
the set D. Let Ψ = (β′, θ′) denote the combined vector of population parameters.
Under the assumption of complete parametric certainty of populations and for known
prior probabilities of the populations the BDF maximazing the probability of correct
classification is formed by log ratio of conditional likelihoods of Z0 at location s0. Then
BDF is specified by

Wz(Z0,Ψ) =
(
Z0 − 1/2(µ0

1z + µ0
2z)
)

(µ0
1z − µ0

2z)/σ
2
0z + γ0, (3)

where γ0 = ln(π0
1/π

0
2). π0

1 and π0
2 are prior probabilities, and π0

1 +π0
2 = 1. Suppose that

for l = 1, 2, the probability measure Plz based on conditional Gaussian distribution of
Z0 given Z = z, Ωl i.e. Z0|Z = z,Ωl ∼ Nl(µ

l
0z, σ

2
0z).

Definition 1. The probability of correct classification for the BDFWz(Z0,Ψ) is defined
as PC(Ψ) =

∑2
l=1 πlPl, where, for l = 1, 2, Pl = Plz((−1)lWz(Z0,Ψ) < 0).

As it follows, PC(Ψ) will be called Bayes probability of correct classification
(BPCC).
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Lemma 1. Closed-form expression for BPCC is PC(Ψ) =
2∑
l=1

π0
l Φ(∆0/2−(−1)lγ0/∆0),

where Φ(·) is the standard Gaussian distribution function and ∆0 stands for conditional
Mahalanobis distance between conditional distributions of Z0, given Z = z.

Proof of Lemma 1 follows from Definition 1 and properties of Gaussian distribution.
In practice it is rarely the case that regression parameters vector β and covariance

parameter vector θ are known, and often we need to estimate these parameters from
the training data. Here we use maximum likelihood (ML) method for estimation and
corresponding estimators are denoted by β̂, θ̂, and Ψ̂ = (β̂′, θ̂′).

Then using (1), (2) we get the estimators of conditional mean and conditional
variance

µ̂0
lz = E(Z0|Z = z; Ωl) = x′0β̂l + α̂′0(z −Xβ̂), l = 1, 2, σ̂2

0z = σ2
0z(θ̂).

By replacing the parameters with their ML estimators in (3) we form the SDF
Wz(Z0, Ψ̂).

Set for l = 1, 2, P̂lz((−1)lWz(Z0, Ψ̂) < 0). Then the actual correct classification
rate for SDF Wz(Z0, Ψ̂) is AR =

∑2
l=1 π

0
l P̂l.

Closed-form expression for AR is derived in Ducinskas and Dreiziene (2011).

Definition 2. Plug-in correct classification rates for the AR based on SDF is

PR =
∑2

l=1

(
π0
l Φ(∆̂0/2− (−1)lγ0/∆̂0)

)
.

Definition 3. Apparent correct classification rates are defined by

APR =
(∑nl

i=1H
(
Wz(Zi, Ψ̂)

)
+
∑n

i=nl+1H(−Wz(Zi, Ψ̂))
)
/n, where H(·) is the

Heaviside step function.

We propose AV ER = (PR+APR)/2 consider as hybrid estimator of AR based on
SDF for different linear models of spatial ecological data.

3 Model selection

In this section the application of the proposed estimators for model selection is con-
sidered. We use a real dataset of zebra mussels observed over the Curonian Lagoon, a
large, shallow coastal waterbody connected to the Baltic Sea by the narrow Klaipeda
Strait. Zebra mussels (Dreissena polymorpha) are one of the most widespread inva-
sive freshwater animals in the world. Currently, zebra mussels are highly abundant in
the Curonian Lagoon, occupying the littoral zone down to 3-4m depth and occurring
on both hard substrates and soft bottoms (Zaiko, Daunys 2015). We have 39 spatial
sites in Curonian Lagoon where salinity, depth and water renewal time were observed.
We also have information about the absence and presence of zebra mussels at those
sites. We treat water renewal time as dependent variable and the remaining two as
explanatory variables. The main purpose is to select the most appropriate model to
the mapping of presence and absence of zebra mussels in the Curonian Lagoon, that
is, to build a model with the greatest correct classification probability.
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Let MT , MR, MM denote three candidate models with different mean structure,
that is, a different mean component Xβ: MT - 1st order trend surface model; MR -
regression model, that is represented as a function of two explanatory variables; MM -
mixed model which combines MT and MR. The design matrix for this model consists
of intercept, coordinates of spatial sites and explanatory variables.

A different number of neighbours are used for the specifying the prior probabilities.
Spatial correlation is modelled by isotropic exponential covariance function given by
σ(h) = σ2exp(−h/η) + τ 2δ(h), where h is a distance between spatial sites, η is a
parameter of spatial correlation, τ 2 is a nugget effect, and δ(h) = 1, if h = 0, and
δ(h) = 0, if h 6= 0.

The results show that the mixed model (MM), including the set of closest neighbors
for estimation of priors, gives the maximum of AVER (AVER=0.757). Salinity, depth
and the coordinates of spatial sites are considered as covariates in the mean model.

4 Conclusions

This work describes a novel approach for spatial linear model selection, applicable
to classified spatial data. This has several attractive features that make it compare
favourably against other model selection approaches. First, it essentially incorporates
the spatial information into data model and classification rule specification. Second, the
approach provides an easily interpretable criterion of how strongly the data support
each of the competing models. The best model has a mixed mean structure which
includes coordinates of spatial sites and explanatory variables salinity and depth as
covariates. The highest probability of correct classification could be approached using
the set of nearest neighbours for estimating the prior probabilities.
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