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Abstract

Robust computationally fast Huber’s M @,-estimates of scale are designed
to approximate the highly robust and efficient Q,-estimate of scale proposed
by Rousseeuw and Croux (1993). The parameters of this approximation are
tuned to provide high robustness and efficiency of these M-estimates of scale for
the Student distributions—the dependencies between the values of the estimate
parameter and distribution shape parameter are written out and tabulated. The
comparative study of robust estimates is performed by computation of their
asymptotic efficiencies and breakdown points. A special attention is payed to
the particular cases of the Gaussian and Cauchy distributions.
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1 Introduction

Estimation of scale is one of the most important problems in statistics (Hampel et al.,
1986; Huber, 1981). First of all, there are two natural goals in statistics: constructing
measures of distribution location and spread, although the role of scale is secondary as
compared to location: generally, the problem of estimation of scale is subordinated to
the problem of estimation of location. However, we may enlist a number of important
reasons for the direct use of scale estimates: (i) data standardizing, (ii) detection of
outliers in the data, (iii) estimation of correlation, and (iv) estimation of regression.

Here, we restrict ourselves to robust estimation of scale. In present, one of the best
robust estimates of scale is given by the @,-estimate (Rousseeuw and Croux, 1993).
This robust estimate is defined as the first quartile of the pair-wise distances between
observations:

Qu = efr — 2},

where the factor ¢ provides the consistency of estimation, k = C?, h = [n/2] + 1. The
Qn-estimate is robust with the breakdown point €* = 0.5 highest possible and high
efficiency 82% at the Gaussian. Its drawback is the high asymptotic computational
complexity: generally, it takes O(nlogn) of computational time.

Much more common, Huber’s robust M -estimates S of scale are given by the implicit
estimating equation (Huber, 1981)

> x(@:/8) =0, (1)

where x(z) is an estimating (score) function commonly even and nondecreasing for
x > 0. The classical particular cases of M-estimates of scale are: the standard deviation
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s = +/n"1> 22 with y(z) = 22 — 1, the mean absolute deviation d = n=' " |z;| with
Xx(z) = |z] — 1 and the median absolute deviation MAD = med;|z;| with x(z) =
sgn(|z| — 1) (the parameter of location is set to zero here).

In this work, we use the approximations of the @,-estimate of scale by low-
complexity and computationally fast robust M(@),-estimates of scale of high efficiency
(Smirnov and Shevlyakov, 2014) with the parameters tuned for the Student distribu-
tions. This family of distributions comprises distributions with relatively heavy tails
with the important particular cases, such as the Cauchy and Gaussian (the limiting
case) distributions.

An outline of the remainder of the paper is as follows. In Section 2, general results
on the approximation of the ),-estimate of scale by M (@), -estimates of scale are given.
In Section 3, the particular case of the Student distributions is considered. In Section 4,
some conclusions are drawn.

2 Approximation of the (),-estimate by
M(Q),-estimates

The notion of the influence function I F'(z; S, F') that defines a measure of the sensitivity
of an estimate functional S = S(F) at a distribution F' to the perturbation at a
point x is one of the central in robust statistical analysis (Hampel et al., 1986). It is
important that the asymptotic variance V(S F) of the estimate S is expressed through
the influence function

V(S,F) = /[F(:U; S, F)*dF(z) .

Moreover, in the class of Huber’s M-estimates of scale (1), the influence function
IF(z; S, F) is proportional to the estimating function x(z):

F(z; S8, F)  x(z).

Basing on this result, it is possible to construct an M-estimate with any admissible
influence function, in particular, with the influence function of the ),-estimate of scale.
This idea is used for constructing the approximation of the @),-estimate of scale by an
M-estimate of scale.

The sought approximation, namely the estimating function y(x) for M @Q,,-estimates
of scale, naturally depends on the underlying distribution density f(z) shape: the
explicit result gives the following form of this connection (Smirnov and Shevlyakov,

2014)

1

Xa(t) = ca —2f(2) - §a2f"(fﬂ), (2)

where the constant ¢, is chosen from the condition of consistency and « is a tuning
parameter. So, we call M-estimates with estimating function y, as M@, -estimates.

In what follows, we apply Equation (2) to the Student distribution densities in order
to design computationally fast highly robust and efficient M (@),,-estimates of scale .
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3 MQ,-estimates for the Student distributions

3.1 Estimating functions for robust M(@),-estimates

In order to get the estimating function of M@, -estimates of scale, we substitute the
expression for the Student distribution density

r(s)

a2 VETT(k/2)(1 + 22/k)" 5

k=12,

into Equation (2) and compute the constant ¢, determined from the condition of con-
sistency

[l ds o

The formula for this consistency constant c,(x) is given by

UGN+ 1/2) [ (k1) + 1)
cal@) = 21-2k73/2[:3/2T3 (k) (  24k(k+2) )

It can be shown that the tuning parameter « lies in the interval [0, 1/ \/5] The results
of computation are presented in Table 1, so, a potential user may choose a consistency
constant and thus with Equation (2) an M(@),-estimate.

We skip the general formula for the estimating function x,(z)—it is rather cum-
bersome; in the particular case a = 0, it has the form

_ YEMD(E+1/2) I2(5HL)
- 21-2kg3/2k3/213 () 2-kr/kT (k) (1 +x2/k)% ’

The breakdown point of M@Q),,-estimates of scale for the Student distributions with
the tuning parameter « lying in [0,1/1/2] is given by

Xo()

. DBk +1/2) 2 APk + D2k +1)
- ) ( )

2-krl2|3203 (k) 9-kl/2KT2(k) (2 _ a2(§k+1) 24k(k 4 2)

The maximum possible breakdown point equal to 50% is attained at k =1 and o = 0
(see Fig. 1). With increasing «, the breakdown point is decreasing for any k; with
given « and increasing k, the breakdown point also is decreasing.

3.2 Asymptotic efficiency of robust M(@),-estimates

~

The asymptotic efficiency ef f(S,) of M@Q,-estimates of scale with the estimating func-
tion xo(x) is computed by the following formula

~ 1
eff(Sa) = V(ga,F)J(F)7
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Figure 1: Breakdown Points of M(@Q),-Estimates of Scale, k =1
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Table 1: Consistency Constant c,(z) for MQ,-Estimates of Scale
k, o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.318 0.318 0.317 0.316 0.314 0.312 0.309 0.305
0.417 0.416 0415 0414 0.411 0.408 0.405 0.401
0.459 0.459 0.458 0.456 0.454 0.451 0.447 0.442
0.483 0.483 0.482 0.480 0.477 0.474 0.470 0.465
0.498 0.498 0.497 0.495 0.492 0.483 0.484 0.479
0.509 0.508 0.507 0.505 0.502 0.499 0.494 0.489
0.516 0.516 0.515 0.512 0.510 0.506 0.501 0.496
0.522 0.522 0.520 0.518 0.515 0.512 0.507 0.502
0.526 0.526 0.525 0.523 0.520 0.516 0.511 0.506
0.530 0.530 0.528 0.526 0.523 0.519 0.515 0.509
0.547 0.546 0.545 0.543 0.540 0.536 0.531 0.525
0.553 0.552 0.551 0.549 0.545 0.541 0.536 0.530
0.555 0.555 0.554 0.551 0.548 0.544 0.539 0.533
0.557 0.557 0.555 0.553 0.550 0.546 0.541 0.535
0.564 0.564 0.562 0.560 0.557 0.552 0.547 0.541

U i W DN =
RTEERNE 00 ot W~

where V(:SL, F) is the asymptotic variance of M@Q),-estimates of scale given by Equa-
tion (1), which takes the following form

JX2(x) dF ()
[ axt(x)dF(x)]*

V(S F) = / [F(z: S, ) dF(z)

J(F) is the Fisher information for scale

J(F) = / {:UJ;((;) + 1}2 dF(z) = kQ—fS

The explicit expression for the asymptotic efficiency has been derived, but it is cum-
bersome and thus not written out; its numerical values are presented in Table 2.

4 Conclusions

1. The class of M@,-estimates of computationally fast and highly robust M-
estimates of scale close in efficiency to the highly efficient and robust @),,-estimate
of scale is thoroughly studied for the Student distributions: explicit formulas
are derived for the consistency constants, asymptotic efficiencies and breakdown
points of those estimates.

2. The efficiency of the considered M@, -estimates are in the range 80%—100%, their
breakdown points lie in the range 25% — 50%—this means that M@, -estimates
are highly efficient and robust.
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Table 2: Asymptotic Efficiency of M@Q),-Estimates of Scale

k, o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1 | 1.000 1.000 1.000 0.999 0.998 0.995 0.989 0.979
2 10984 0985 0.986 0.988 0.991 0.993 0.995 0.996
3 10962 0962 0.964 0.967 0.971 0976 0.981 0.986
4 10942 0943 0945 0.948 0.953 0.958 0.965 0.972
5 10926 0927 0929 0.932 0937 0944 0.939 0.948
6 |0913 0914 0916 0.920 0.925 0.931 0.939 0.948
7 10903 0903 0.906 0.909 0915 0.921 0.929 0.939
8 10.894 0.895 0.897 0.901 0.906 0.913 0.921 0.931
9 10887 0.888 0.888 0.890 0.894 0.906 0.914 0.924
10 | 0.881 0.881 0.884 0.887 0.893 0.900 0.908 0.918
20 | 0.849 0.849 0.852 0.855 0.861 0.867 0.876 0.886
30 | 0.836 0.837 0.839 0.843 0.848 0.855 0.863 0.874
40 1 0.830 0.830 0.832 0.836 0.841 0.848 0.856 0.867
50 | 0.826 0.826 0.828 0.832 0.837 0.844 0.852 0.862
oo | 0.808 0.809 0.811 0.814 0.819 0.825 0.834 0.844

3. The asymptotic complexity of M@,-estimates is of order O(n), much smaller

than O(nlogn) of the @,-estimate.

Note that in the case of the Cauchy distribution, the M@, -estimate is just the
maximum likelihood estimate of scale with efficiency 100% and the breakdown
point 50%; in the other limit case, for the Gaussian distribution, the efficiency
and breakdown point are equal to 80.8% and 29.3%, respectively.
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