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Abstract
We consider fractional Ornstein–Uhlenbeck process as well as fractional CIR-

process with Hurst index H ∈ (0, 1), and several approaches to the exact and
approximate option pricing of the asset price model that is described by the ge-
ometric linear model with stochastic volatility, where volatility is driven by frac-
tional Ornstein–Uhlenbeck process. We assume that the Wiener process driving
the asset price and the fractional Brownian motion driving stochastic volatility
are correlated. We consider three possible levels of representation and approxi-
mation of option price, with the corresponding rate of convergence of discretized
option price to the original one.

We can rigorously treat the class of discontinuous payoff functions of polyno-
mial growth. As an example, our model allows to analyze linear combinations of
digital and call options. Moreover, we provide rigorous estimates for the rates of
convergence of option prices for polynomial discontinuous payoffs f and Hölder
volatility coefficients, a crucial feature considering settings for which exact pric-
ing is not possible.
Keywords: F-Ornstein–Uhlenbeck process, F-CIR process, stochastic volatility,
data science

1 Model with stochastic volatility driven by frac-

tional Ornstein–Uhlenbeck process

These results are common with K. Ralchenko, V. Piterbarg, V. Bezborodov, L. Di
Persio, A. Yurchenko-Titarenko, S. Kuchuk-Jatsenko and partially are published in [1]-
[4]. We consider a financial market, characterized by a finite maturity time T , and
composed by a risk free bond, or bank account, β = {βt, t ∈ [0, T ]}, whose dynamic
reads as βt = eρt, where ρ ∈ R+ represents the risk free interest rate, and a risky asset
S = {St, t ∈ [0, T ]} whose stochastic price dynamic is defined over the probability space
{Ω,F ,F = {Ft}t∈[0,T ],P}, by the following system of stochastic differential equations

dSt = bStdt+ σ(Yt)StdWt, (1)

dYt = −αYtdt+ dBH
t , t ∈ [0, T ]. (2)

Here W = {Wt, t ∈ [0, T ]} is a standard Wiener process, b ∈ R, α ∈ R+, are constants,
while Y = {Yt, t ∈ [0, T ]} characterizes the stochastic volatility term of our model,
being the argument of the function σ. The process Y is Ornstein-Uhlenbeck, driven by
a fractional Brownian motion BH = {BH

t , t ∈ [0, T ]}, of Hurst parameter H ∈ (0, 1),
assumed to be correlated with W .
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We assume that payoff function f : R+ → R+ satisfies the following conditions:

(A)

(i) f is a measurable function of polynomial growth,

f(x) ≤ Cf (1 + xp), x ≥ 0,

for some constants Cf > 0 and p > 0.

(ii) Function f is locally Riemann integrable, possibly, having discontinuities of the
first kind.

Moreover we assume that the function σ : R→ R satisfies the following conditions:

(B) there exists Cσ > 0 such that

(i) σ is bounded away from 0, σ(x) ≥ σmin > 0;

(ii) σ has moderate polynomial growth, i.e., there exists q ∈ (0, 1) such that

σ(x) ≤ Cσ(1 + |x|q), x ∈ R;

(iii) σ is uniformly Hölder continuous, so that there exists r ∈ (0, 1] such that

|σ(x)− σ(y)| ≤ Cσ|x− y|r, x, y ∈ R;

(iv) σ is differentiable a.e. w.r.t. the Lebesgue measure on R, and its derivative is of
polynomial growth: there exists q′ > 0 such that

|σ′(x)| ≤ Cσ(1 + |x|q′),

a.e. w.r.t. the Lebesgue measure on R.

Lemma 1. (i) Equation (2) has a unique solution of the form

Yt = Y0e
−αt +

∫ t

0

e−α(t−s)dBH
s .

Moreover, for any α > 0 and any β < 2

E exp{α sup
t∈[0,T ]

|Yt|β} <∞.

(ii) Equation (1) has a unique solution of the form

St = S0 exp

{
bt+

∫ t

0

σ(Ys)dWs −
1

2

∫ t

0

σ2(Ys)ds

}
.

Moreover, for any m ∈ Z we have E(ST )m < ∞, and for any m > 0 it holds
E(f(ST ))m <∞.
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According to [5], fBm admits a compact interval representation via some Wiener
process B, specifically,

BH
t =

∫ t

0

k(t, s)dBs, k(t, s) = cHs
1
2
−H
∫ t

s

uH−
1
2 (u− s)H− 3

2du1s<t,

with cH = (H − 1
2
)
(

2HΓ( 3
2
−H)

Γ(H+ 1
2

)Γ(2−2H)

)1/2

. Denote also

X(t) = log S(t) = log S0 + bt− 1

2

∫ t

0

σ2(Ys)ds+

∫ t

0

σ(Ys)dWs.

Lemma 2. (i) The stochastic derivatives of the fBm BH equal to

DW
u B

H
t = 0, DB

u B
H
t = k(t, u).

(ii) The stochastic derivatives of Y equal to

DW
u Yt = 0, DB

u Yt = cHe
−αtu1/2−H

∫ t

u

eαssH−1/2(s− u)H−3/2ds1u<t.

(iii) The stochastic derivatives of X equal to

DW
u Xt = σ(Yu)1u<t,

DB
uXt =

(
−
∫ t

0

σ(Ys)σ
′(Ys)D

B
u Ysds+

∫ t

0

σ′(Ys)D
B
u YsdWs

)
1u<t.

Lemma 3. The laws of ST and XT are absolutely continuous with respect to the
Lebesgue measure.

Let us introduce the following notations: g(y) = f(ey), F (x) =
∫ x

0
f(z)dz and let

G(y) =
∫ y

0
g(z)dz, x ≥ 0, y ∈ R. Also, let

ZT =

∫ T

0

σ−1(Yu)dWu. (3)

Note that ZT is well defined because of condition (B), (i).

Theorem 1. Under conditions (A) and (B) the option price Ef(ST ) = Eg(XT ) can
be represented as

Ef(ST ) = E

(
F (ST )

ST

(
1 +

ZT
T

))
.

Alternatively,

Eg(XT ) =
1

T
E (G(XT )ZT ) .
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Consider the first approach to the numerical approximation of the solution for the
option pricing problem. Consider equidistant partition of the interval [0, T ]: ti =
ti(n) = iT

n
, i = 0, 1, 2, . . . , n. Then we define the discretizations of Wiener process W

and fractional Brownian motion BH :

∆Wi = W (ti+1)−W (ti) , ∆BH
i = BH (ti+1)−BH (ti) , i = 0, 1, 2, . . . , n.

Discretized processes Y and X, corresponding to a given partition have the form

Y n
tj

= Y0e
−αtj + e−αtj−1

j−1∑
i=0

eαti∆BH
i ,

Xn
tj

= X0 + btj −
1

2n

j−1∑
i=0

σ2
(
Y n
ti

)
+

j−1∑
i=0

σ
(
Y n
ti

)
∆Wi

= X0 + btj −
1

2

∫ tj

0

σ2(Y n
s )ds+

∫ tj

0

σ(Y n
s )dWs, j = 0, . . . , n,

where we put Y n
s = Y n

ti
for s ∈

[
ti, ti+1

)
. Concerning the discretization of the term ZT

from (3), it has a form Zn
T =

∫ T
0

1
σ(Y ns )

dWs. Eventually we define Sntj = exp
{
Xn
tj

}
.

Theorem 2. Let conditions (A) and (B) hold. There exists a constant C not depending
on n such that ∣∣∣∣Ef(ST )− E

(
F (SnT )

SnT

(
1 +

Zn
T

T

))∣∣∣∣ ≤ Cn−rH .

Let us introduce the following notations: let the covariance matrix reads as follows

CX,Z =

(
σ2
Y

T
T σ2

Z

)
, and let σ2

Y
=
∫ T

0
σ2(Ys)ds, mY

= X0+bT− 1
2
σ2
Y

, σ2
Z

=
∫ T

0
σ−2(Ys)ds.

We assume additionally that the following assumption is fulfilled.

(C) ∆ = σ2
Y
σ2
Z
− T 2 > 0 with probability 1.

Theorem 3. Under conditions (A)–(C) the following equality holds:

Eg(XT ) = (2π)−
1
2

∫
R
G(x)E

(
(x−m

Y
)

σ3
Y

exp

{
− (x−m

Y
)2

2σ2
Y

})
dx

= (2π)−
1
2 E

(
(σ

Y
)−1

∫
R
G((x+mY )σY )xe−

x2

2 dx

)
.

(4)

Let σ
Y,n

=
∫ T

0
σ2(Y n

s )ds, m
Y,n

= X0 + bT − 1
2
σ2
Y,n

.

Theorem 4. Under conditions (A), (B), and (C) we have∣∣∣∣∣Eg(XT )− (2π)−
1
2

∫
R
G(x)E

(
(x−m

Y,n
)

σ3
Y,n

exp

{
− (x−m

Y,n
)2

2σ2
Y,n

})
dx

∣∣∣∣∣ ≤ Cn−rH .
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Applying Theorem 3 and equality (4), we clearly see that the option price depends

on the random variable σ2
Y =

∫ T
0
σ2(Ys)ds. Therefore it is natural to derive the density

of this random variable. Since σ2
Y depends on the whole trajectory of the fBm BH on

[0, T ], we apply Malliavin calculus in an attempt to find the density.
Now we introduce additional assumptions on the function σ.
(D) The function σ ∈ C(2)(R), its derivative σ′ is strictly nonnegative, σ′(x) >

0, x ∈ R, and σ′, σ′′ are of polynomial growth.

Lemma 4. Under assumptions (B) and (D) the stochastic process

DBσ2
Y

||DBσ2
Y
||2H

=

{
DB
t σ

2
Y

||DBσ2
Y
||2H

, t ∈ [0, T ]

}
belongs to the domain Dom δ of the Skorokhod integral δ.

Denote η = (||DBσ2
Y
||2H)−1, l(u, s) = cHe

−αs ∫ s
u
eαvvH−1/2(v − u)H−3/2dv, κ(y) =

σ(y)σ′(y).

Theorem 5. (i) The density pσ2
Y

of the random variable σ2
Y

is bounded, continuous
and given by the following formulas

pσ2
Y

(u) = E

[
1σ2

Y
>uδ

(
DBσ2

Y

||DBσ2
Y
||2H

)]
, (5)

where the Skorokhod integral is in fact reduced to a Wiener integral,

δ

(
DBσ2

Y

||DBσ2
Y
||2H

)
= 2η

∫ T

0

κ(Ys)

(∫ s

0

u1/2−H l(u, s)dBu

)
ds−

∫ T

0

DB
u ηD

B
u (σ2

Y
)du.

(ii) The option price Eg(XT ) can be represented as the integral with respect to the
density pσ2

Y
(u) defined by (5) as follows:

Eg(XT ) = (2π)−
1
2T

∫
R
G(x)

∫
R

(x+ u/2−X0 − bT )

u3

× exp

{
− (x+ u/2−X0 − bT )2

2u2

}
pσ2

Y
(u)du.

2 Fractional CIR. Case k = 0

Consider the stochastic differential equation of the following form:

dXt = ãXtdt+ σ̃
√
XtdB

H
t , t ≥ 0, ã ∈ R, X0, σ̃ > 0, (6)

BH = {BH , t ≥ 0} is a fractional Brownian motion with H > 2/3.
It is known that if H > 2/3, the equation (6) has a unique solution until the first

moment of reaching zero, and the integral
∫ t

0

√
XsdB

H
s exists as a pathwise Riemann-

Stieltjes sums limit. Denote τ0 := inf{t > 0 : Xt = 0} and consider the trajectories
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of the process {Xt, t ≥ 0} on [0, τ0). After substitution Yt =
√
Xt and using the Ito

formula for integrals with respect to fractional Brownian motion, we obtain:

dYt =
dXt

2
√
Xt

=
ãXtdt

2
√
Xt

+
σ̃

2
dBH

t .

Denoting a = ã/2, σ = σ̃/2, we get

dYt = aYtdt+ σdBH
t

with the initial condition Y0 =
√
X0.

So, in the case of H > 2/3, the solution {Xt, t ∈ [0, τ0)} of the equation (6) is the
square of the fractional Ornstein–Uhlenbeck process until it reaches zero.

Let H ∈ (0, 1) be an arbitrary Hurst index, {Yt, t ≥ 0} be a fractional Ornstein-
Uhlenbeck process, i.e. the solution of the SDE

dYt = aYtdt+ σdBH
t , t ≥ 0, a ∈ R, σ > 0,

and τ be the first moment of reaching zero by the latter.

Definition 1. The fractional Cox–Ingersoll–Ross process (with zero “mean” parame-
ter) is the process {Xt, t ≥ 0} such that for all t ≥ 0, ω ∈ Ω:

Xt(ω) = Y 2
t (ω)1{t<τ(ω)}.

Theorem 6. Let τ be the first moment of zero hitting by the fractional Ornstein–
Uhlenbeck process with parameters a ∈ R and σ > 0. Then, for 0 ≤ t ≤ τ , the
corresponding fractional CIR process satisfies the following SDE:

dXt = 2aXtdt+ 2σ
√
Xt ◦ dBH

t ,

where X0 = Y 2
0 > 0 and the integral with respect to the fractional Brownian motion is

defined as the pathwise Stratonovich integral.

The next natural question regarding the fractional CIR process is finiteness of its
zero hitting time moment. It is obvious that it coincides with the respective moment
of the corresponding fractional Ornstein–Uhlenbeck process {Yt, t ≥ 0}.

Let {Yt, t ≥ 0} be a fractional Ornstein–Uhlenbeck process, i.e. the solution of the
SDE

dYt = aYtdt+ σdBH
t , t ≥ 0, a ∈ R, σ > 0,

and τ be the first moment of reaching zero by the latter.
Y can be written explicitly as

Yt = eat
(
Y0 + σ

∫ t

0

e−asdBH
s

)
,

where the integral with respect to fractional Brownian motion is the limit of Riemann-
Stieltjes sums and can be defined by integration by parts:∫ t

0

e−asdBH
s = e−atBH

t + a

∫ t

0

e−asBH
s ds.
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Proposition 1. Let t ≥ s ≥ 0. Then covariance function RH(t, s) of the fractional
Ornstein–Uhlenbeck process Y can be represented in the following form:

RH(t, s) =
Hσ2

2

(
− eat−as

∫ t−s

0

e−azz2H−1dz + e−at+as
∫ t

t−s
eazz2H−1dz

−eat+as
∫ t

s

e−azz2H−1dz + eat−as
∫ s

0

eazz2H−1dz + 2eat+as
∫ t

0

e−azz2H−1dz

)
.

Let τ be the first moment of zero hitting by the fractional Ornstein-Uhlenbeck pro-
cess (and consequently by the corresponding fractional CIR process with zero “mean”
parameter).

Theorem 7. (1) If a ≤ 0, then P(τ <∞) = 1.

(2) If a > 0, then P(τ <∞) ∈ (0, 1), and we have the upper bound

P(τ <∞) ≤ C1

(
Y0

σ

) 1
H
−2

exp

(
− a2HY 2

0

σ2Γ(2H + 1)

)
,

where C1 > 0 is a constant.

3 Fractional CIR. Case k > 0

Consider the process Y = {Yt, t ≥ 0} that satisfies the following SDE until its first zero
hitting:

dYt =
1

2

(
k

Yt
− aYt

)
dt+

σ

2
dBH

t , Y0 > 0, (7)

where a, k ∈ R, σ > 0 and {BH
t , t ≥ 0} is a fractional Brownian motion with the Hurst

parameter H ∈ (0, 1).

Definition 2. Let H ∈ (0, 1) be an arbitrary Hurst index, {Yt, t ≥ 0} be the process
that satisfies the equation (7) and τ be the first moment of reaching zero by the latter.

The fractional Cox-Ingersoll-Ross process is the process {Xt, t ≥ 0} such that for
all t ≥ 0, ω ∈ Ω:

Xt(ω) = Y 2
t (ω)1{t<τ(ω)}.

Similarly to the case k = 0, the definition of the fractional CIR process is natural
as the following theorem holds:

Theorem 8. Let τ be the first moment of hitting zero by Y . For 0 ≤ t ≤ τ the
fractional CIR process satisfies the following SDE:

dXt = (k − aXt)dt+ σ
√
Xt ◦ dBH

t ,

where X0 = Y 2
0 > 0 and the integral with respect to the fractional Brownian motion is

defined as the pathwise Stratonovich integral.
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Just as in the case k = 0, let us consider the question of finiteness of the zero hitting
time moment by the fractional CIR process.

Theorem 9. Let k > 0, H > 1/2. Then the process {Yt, t ≥ 0}, defined by the equation
(7) (and consequently the corresponding fractional CIR process), is strictly positive a.s.

Let {BH
t , t ≥ 0} be the fractional Brownian motion with H < 1/2 and let a ∈ R,

σ > 0 be fixed. Consider the set of processes

Y := {Y (k) = {Y (k)
t , t ≥ 0}, k > 0},

such that

Y
(k)
t (ω) =

{
Y0 + 1

2

∫ t
0

(
k

Y
(k)
s (ω)

− aY (k)
s (ω)

)
ds+ σ

2
dBH

t (ω), if t < τ (k)(ω)

0, if t ≥ τ (k)(ω)
,

where τ (k) := inf{t ≥ 0|Y (k)
t = 0}.

Theorem 10. For all T > 0, P(τ (k) > T )→ 1, k →∞.
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