ИСПОЛЬЗОВАНИЕ НЕСТАНДАРТНЫХ ЗАДАЧ В ОБУЧЕНИИ ШКОЛЬНИКОВ 7–9 КЛАССОВ

В. В. Травин

Белорусский государственный университет, г. Минск; Vadim013by@yandex.ru; науч. рук. – Ю. Д. Чурбанов, канд. физ.-мат. наук, дои.

Данная работа посвящена изучению методов решения нестандартных задач на уроках математики. В работе представлены теоретические основы использования нестандартных задач, а также методы решения нестандартных задач. В качестве собственных разработок были представлены методические планы занятий, планы подачи и оформления материала и методы решения нестандартных заданий на занятиях по математике.

Ключевые слова: задача; нестандартная задача; метод решения задачи.

ОСНОВЫ ИСПОЛЬЗОВАНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ

Одной из важных составляющих развития человека на математических занятиях является умение решать задачи, которые являются более сложными, нежели те, решение которых может быть сведено к известному алгоритму. Под задачей понимают упражнение, которое нужно выполнить или решить посредством умозаключения, вычисления, построения и т. п. Каждая задача задаёт совокупность данных — условие задачи и вопрос, указывающий искомое, — требование задачи. Решение задачи представляет собой некоторую последовательность действий, в ходе которой будут даны обоснованные ответы на требования задачи. Обзор решения большинства задач можно описать с помощью указаний, которые можно условно разбить на 4 основных этапа:

- 1. Нужно ясно понять задачу.
- 2. Нужно найти связь между данными и неизвестным. Если не удаётся сразу обнаружить эту связь, возможно, полезно будет рассмотреть вспомогательные задачи. В конечном счёте, необходимо прийти к плану решения.
 - 3. Нужно осуществить план решения.
 - 4. Нужно изучить найденное решение.

Анализ данного плана показывает, что наиболее существенным из данных шагов является этап №2 поиска связующих элементов между исходными данными и ответом. Сложности, связанные с поиском связей в этом этапе, напрямую связаны с наличием базы знаний учащегося. По отношению к теории выделяют стандартные и нестандартные задачи.

Одна из особенностей стандартных задач состоит в следующем: «Поиск решения состоит в составлении на основе общего правила (формулы, тождества) или общего положения (определения, теоремы) программы — последовательности шагов решения задач такого вида». Для нестандартных задач таких общих алгоритмов нет. Тем не менее, необходимость в решении таких задач порождает выделять ряд общих советов, которые бы помогли учащимся решить такие задачи. Эти указания обычно называют эвристическими правилами или, короче, эвристиками. В отличие от математических правил эвристики носят характер необязательных рекомендаций, советов, следование которым может привести (а может и не привести) к решению задачи.

Нестандартные задачи имеют отчётливо выраженную развивающую функцию. Человек приобретает математические знания, повышает своё математическое образование. Такие задачи постоянно возникают в практических ситуациях. Исследование и описание процессов и их свойств невозможно без привлечения математического аппарата. Систематическое решение таких задач воспитывает в человеке усидчивость, внимание, гибкость мышления и силу воли.

Методический материал, предназначенный для проведения занятий в обучении решения нестандартных задачах, включает как план проведения занятия, методы и формы уроков, так и математические модели решения задач.

ОПИСАНИЕ СТРУКТУРЫ, ОФОРМЛЕНИЯ И МЕТОДОЛОГИИ РЕШЕНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ

В ходе построения структуры и оформления материала о решении нестандартных задач были использованы основные принципы инфографики:

- 1. Стремление к созданию привлекательных образов читателя.
- 2. Оформление с использованием выразительного дизайна.
- 3. Наличие чередования цветов и высокой иллюстративности.

Наличие красного цвета на фоне условия задачи внедряет в организм чувство уверенности и наделяет лидерскими качествами. Синий цвет на фоне решения символизирует глубину видения проблемы и придаёт читателю чувство спокойствия при анализе и прочтении решения. Зелёный цвет на фоне материалов по истории и методологии математики придаёт материалу творческий и созидательный характер, а также придаёт материалу большую связность с другими дисциплинами и методами. Цветовая гамма портретов и рисунков создаёт общий благоприятный фон и атмосферу при прочтении материалов.

Структура содержания представляет собой двойственную параллель мыслей автора и решения задач с включением блоков по истории и методологии математики. Методы решения нестандартных задач базируются на некоторой идее, которая включает в себя определённый раздел школьной математики.

В работе рассмотрены 6 основных идей:

- 1. Идея числа глава «Чему равно КАРЛСОН/ВАРЕНЬЕ?».
- 2. Идея варианта глава «Количества исходов и комбинаторика».
- 3. Идея сравнения глава «Неравенства».
- 4. Идея независимости глава «Задачи с параметром».
- 5. Идея ряда глава «Последовательности и суммы».
- 6. Идея синтеза глава «Индукция и логика».

Примеры задач, используемые для реализации идеи числа:

- 1. В числовом ребусе разным буквам соответствуют разные цифры. Определить, чему равно значение выражения $\frac{K \cdot A \cdot P \cdot J \cdot C \cdot O \cdot H}{B \cdot A \cdot P \cdot E \cdot H \cdot b \cdot E}$?
- 2. В числовом ребусе разным буквам соответствуют разные цифры. Определите, чему равны значения выражений $\frac{P \cdot O \cdot M \cdot A \cdot III \cdot K \cdot A}{H \cdot A \cdot P \cdot II \cdot II \cdot C \cdot C}$ и $\frac{C \cdot A \cdot M \cdot O \cdot J \cdot \ddot{E} \cdot T}{\mathcal{R} \cdot K \cdot O \cdot P \cdot b}$?
- 3. В используемом равенстве VI IV = IX перенесите одну спичку так, чтобы получилось верное равенство.
- 4. Пусть некоторые натуральные числа a,b,c и d связаны равенством $\frac{a}{b} = \frac{c}{d} = \frac{ab+1}{cd+1}$. Верно ли, что среди них найдутся равные числа?
- 5. Пусть даны целые числа x и y, связанные равенством $x^2y-2xy+4x-8=11$. Найдите эти числа.
- 6. Докажите, что число, квадрат которого есть число 37, не является рациональным числом.