МЕХАНИЗМ ДЕЙСТВИЯ НА РАКОВЫЕ КЛЕТКИ КОМПЛЕКСА ЦИТОХРОМА С С КАРДИОЛИПИНОМ, ПОТЕНЦИАЛЬНОГО ПРОТИВОРАКОВОГО СРЕДСТВА НОВОГО ТИПА

Владимиров Г.К.¹, Миянович О.В.¹, Гребеник Е.А.¹, Шпичка А.И.¹, Уласов И.В.¹, Тимашев П.С.^{1,4}, Максимчик П.А.², Животовский Б.Д.², Левкина А.А.², Нестерова А.М.¹, Каган В.Е.¹, Владимиров Ю.А.^{1,2,3,4}

¹Институт регенеративной медицины, Сеченовский университет, Москва, Россия
²Московский государственный университет им. М.В. Ломоносова, Москва, Россия
³Российский национальный исследовательский медицинский университет имени
Н.И. Пирогова, Москва, Россия

В последние годы привлекает всеобщее внимание проблема программируемой смерти клеток, прежде всего – апоптоза, что связано с ключевой ролью этого процесса как в регуляции роста и развития организмов, так и в развитии разнообразных болезней человека, старении и смерти. Ключевым событием на ранних стадиях апоптоза является пероксидация липидов в митохондриях, которая катализируется комплексом цитохрома с с митохондриальным фосфолипидом кардиолипином. Ранее в нашем коллективе было показано, что комплекс представляет собой наносферу, названную Цит-КЛ. При изучении действия Цит-КЛ на живые клетки и митохондрии было обнаружено, что эти наносферы вызывают образование липидных радикалов и последующее накопление липидных пероксидов. Совместно с группой В.П. Торчилина в Бостоне было обнаружено токсическое действие Цит-КЛ на изолированные раковые клетки и было предположено, что в силу своей высокой противораковой активности и отсутствия эффекта привыкания раковых клеток к Цит-КЛ эти частицы могут стать основой противораковых средств нового типа, запускающих естественный процесс программируемой смерти клеток.

В настоящем исследовании мы поставили цель — определить, по какому механизму происходит программируемая смерть раковых клеток под действием наносфер Цит-КЛ. Смерть клеток может происходить по разным механизмам: апоптозу, ферроптозу, некроптозу и т.д. В исследованиях мы использовали комплекс методов.

С помощью прибора xCelligence мы исследовали динамику изменения электропроводности системы после добавления к раковым клеткам

⁴Институт кристаллографии им. А.В. Шубникова ФНИЦ «Кристаллография и фотоника» РАН, Москва, Россия

комплекса цитохрома c с кардиолипином или отдельных его компонентов. С использованием прибора CellInsight CX7 мы исследовали токсическое действие частиц Цит-КЛ и отдельных их компонентов на раковые клетки во времени. В каждой из одновременно инкубировавшихся проб мы получали микрофотографии раковых клеток через каждые 15 мин в течение 4х часов. Было показано, что комплекс Цит-КЛ способен вызывать смерть раковых клеток в течение первых 2-3 часов и что этот эффект подавляется антиоксидантом тролоксом. Эти результаты говорят в пользу того, что при добавлении Цит-КЛ раковые клетки погибали в результате окислительного стресса. Для определения типа клеточной смерти, вызываемой комплексом Цит-КЛ в раковых клетках, использовались биохимические маркеры в совокупности с методом проточной цитометрии. Использовались маркеры, неспецифично отражающие процесс окисления липидов в клеточной мембране и изменение ее проницаемости - Аннексин V для определения экстернализации фосфатидилсерина и пропидия иодид для обнаружения пермеабилизованных мембран, соответственно. Также оценивалась активация каспазы-3 (что является специфичным признаком апоптоза) и определялась фосфорилированная форма RIP1, маркера некроптоза. В совокупности наши данные показали, что наносферы комплекса цитохрома с с кардиолипином вызывают управляемую смерть клеток, но не запускают апоптоз.

Работа поддержана грантом РНФ 19-14-00244.