A STUDY OF ISOMERIC YIELD RATIOS IN THE 124 Te(γ ,n) 123m Te REACTION IN THE GIANT *E*1-RESONANCE REGION

Mazur V.M., Symochko D.M., Bigan Z.M., Derechkey P.S. Institute of Electron Physics, Ukrainian National Academy of Sciences, Uzhhorod E-mail: derecskei89@gmail.com

The difficulty of measuring the isomeric yield ratios $d=Y_m/Y_g$ in the $^{124}\text{Te}(\gamma,n)^{123\text{m}}\text{Te}$ reaction stems from the stability of the ground state of the ^{123}Te nucleus, which disallows the simultaneous measurement of the isomeric Y_m and ground Y_g states excitation. To estimate the isomeric ratio we used the yield of the (γ,n) reaction, Y_n of the neighbouring nucleus ^{122}Te measured at the same time as the yield Y_m of the $^{123\text{m}}\text{Te}$ isotope. Since the characteristics of the giant dipole resonance in the tellurium isotopes changes slowly from nucleus to nucleus, such a procedure leads to the errors not worse than 2–3%. During measurements the activation technique was applied. To identify the decay of the isomeric state with $J^{\pi}=11/2^{-1}$ of the nucleus $^{123\text{m}}\text{Te}$ ($T_{1/2}=119.2$ days) the E=247 keV gamma-line was used. The research was conducted on the bremsstrahlung gamma-beam of the microtron M-30 of IEP, NAS of Ukraine, in the region of 10–18 MeV.

The natural mixture of the tellurium isotopes comprises 0.8% of the stable ¹²³Te isotope. Therefore, though, in general, the $(\gamma, \gamma')^m$ reaction cross section is two orders of magnitude smaller than that of the (γ, n) reaction, we have made in the threshold region of the ¹²⁴Te $(\gamma, n)^{123m}$ Te reaction a correction for the contribution of the ¹²³Te $(\gamma, \gamma')^{123m}$ Te reaction, the yield of which was estimated separately.

As a result of measurements at the energies $E_{\gamma max}$ =11.5 MeV, 12.5 MeV, 13.5 MeV, 14.5 MeV, 15.5 MeV, 16.5 MeV, 17.5 MeV, we have obtained the following values of the isomeric yield ratios $\eta = Y_m/(Y_m + Y_g)$, respectively: 0.040±0.004, 0.087±0.004, 0.105±0.006, 0.142±0.005, 0.156±0.005 and 0.179±0.007.

Theoretical calculations of the isomeric yield ratios of the $^{124}\text{Te}(\gamma,n)^{123m}\text{Te}$ reaction were carried out. Computations were performed using the TALYS-1.4 code. Comparison of calculated and experimental data indicates a satisfactory agreement.