ON ROTATIONAL BANDS WITH $K^{\pi} = 0^{+}_{2}$, 2^{+}_{2} AND 1^{+}_{1} IN 160 Gd, 164 Dy AND 166 Er

Govor L.I., Demidov A.M., Kurkin V.A., Mikhailov I.V. National Research Center "Kurchatov Institute", Moscow, Russia E-mail: l.govor@mail.ru

In our investigations of γ -rays in the $(n,n'\gamma)$ reaction on 160 Gd [1], 164 Dy [2] and 166 Er [3] we established the completeness of level schemes with $J^{\pi} = 0^+ \div 4^+$ in these nuclei up to 1.9 MeV excitation energy. Obtained in these works results allowed to define that problems arising at construction of rotational bands with $K^{\pi} = 0^+_2$ and 2^+_2 exist in all of these nuclei (for 166 Er see also [4]). In particular, the levels with $J^{\pi}K = 2^+0_2$, 4^+0_2 , 3^+2_2 , 4^+2_2 were not found at the expected excitation energies. The energies of head levels for bands with $K^{\pi} = 0^+_2$, 2^+_2 and $K^{\pi} = 1^+_1$ are given in the table in keV units.

 K^{π} ^{160}Gd ^{164}Dy ^{166}Er
 0^{+}_{2} 1558.37
 1779.14
 1713.41

 2^{+}_{2} 1586.69
 1706.66
 1703.10

 1^{+}_{1} 1568.69
 1840.67
 1812.76

The one of possible explanation is that Coriolis interaction leads to the confluence of states with $J^{\pi}K = 2^{+}0_{2}$ and $2^{+}1_{1}$, $3^{+}2_{2}$ and $3^{+}1_{1}$, $4^{+}0_{2}$ and $4^{+}1_{1}$ since the presence of $K^{\pi} = 1^{+}1_{1}$ band levels plays important role in this interaction [5].

Another reason of discussed phenomenon may be connected with distribution of Nilsson two-quasiparticle states among bands. There are two groups of Nilsson states expected in this excitation energy region: a) the v[521] \downarrow , v[521] \uparrow , v[523] \downarrow , π [411] \downarrow , π [411] \uparrow and π [413] \downarrow states with small orbital momenta and b) the neutron $1i_{13/2}$ subshell states (v[651] \uparrow , v[642] \uparrow , v[633] \uparrow) and the proton $1h_{11/2}$ subshell ones (π [532] \uparrow , π [523] \uparrow) with large orbital momenta [5,6] (the latter set states determine the nonspherity of nuclei). The neighbour states of the second group cannot participate in creating the $K^{\pi} = 2^{+}_{2}$ band (in contrast to the 1^{+}_{1} band). Pairs with $J^{\pi} = 0^{+}$ give small contributions into $K^{\pi} = 0^{+}_{2}$ band in 1^{60} Gd and 1^{66} Er but put essential contribution into in 1^{64} Dy (vv[633] \uparrow state) [6]. It is possible in 1^{64} Dy the essential Coriolis interaction of levels for $K^{\pi} = 1^{+}_{1}$ and $K^{\pi} = 0^{+}_{2}$ bands is expected. The factors mentioned above should have an influence on the $K^{\pi} = 0^{+}_{2}$ and 2^{+}_{2} band structure in 1^{60} Gd, 1^{64} Dy and 1^{66} Er.

- 1. L.I.Govor et al. // Phys. At. Nuclei. 2009. V.72. P.1799.
- L.I.Govor et al. // LXIII International Conference NUCLEUS 2013. Book of abstracts. 2013. P.84.
- 3. L.I.Govor *et al.* // LXIV International Conference NUCLEUS 2014. Book of abstracts. 2013.
- 4. E.P.Grigoriev // Yad. Fiz. 1994. V.57. P.590.
- 5. A.Bohr, B.R.Mottelson. Nuclear Structure. V.2. New York, Amsterdam, 1974.
- V.G.Soloviev et al. // Fiz. Elem. Chastits At. Yadra. 1996. V.27. P.1643; Phys. Part. Nucl. 1996. V.27. P.667.