
DETECTION OF LIGHT NEUTRON NUCLEI IN ALPHA-PARTICLE-INDUCED FISSION OF ²³⁸U BY ACTIVATION METHOD WITH ²⁷AL

Novatsky B.G., Sakuta S.B., Stepanov D.N.

National Research Center "Kurchatov Institute", Moscow, Russia

E-mail: sbsakuta@mail.ru

Nuclear-stable multineutrons among products of the ternary fission of 238 U nuclei that is induced by 62-MeV alpha particles have been sought by activation method. The beta-active isotope chain 28 Mg \rightarrow ²⁸Al \rightarrow ²⁸Si was used as an indicator of neutron nuclei. The 28 Mg with a half-life of 20.915 h could be formed in this chain in the 27 Al + x n \rightarrow 28 Mg + (x-2)np process induced by multineutrons in the secondary 27 Al target. The gamma lines 1342 and 1779-keV (as it is shown in the Figure) accompanying the beta decay of the 28 Mg and 28 Al

nuclei, respectively, have been observed in the spectra of the irradiated 27 Al sample (after its the preliminary diffusion cleaning from sodium) [1]. The decay time of the indicated lines is in agreement within the measurement accuracy with the known half-life of 28 Mg. Thus, the reported measurements confirm the results of our previous work [2], where the possible emission of multineutrons from the ternary fission of 238 U was established by characteristic 1384-keV gamma rays from the 88 Sr + x n \rightarrow (x-4)n + 92 Sr \rightarrow 92 Y process in the activated strontium sample. Comparison showed that the yield of 28 Mg in the case of the interaction of multineutrons with 27 Al is an order of magnitude higher than the yield of 92 Sr.

The results of two independent experiments indicate that nuclear-stable multineutrons (most likely, 6 n) are emitted from the alpha-particle-induced ternary fission of 238 U. In the future, we are going to improve the statistics of the measurements by increasing the intensity of the beam and irradiation time of samples.

- 1. B.G.Novatsky, S.B.Sakuta, D.N.Stepanov // JETP Letters. 2013. V.98. P.656.
- B.G.Novatsky, E.Yu.Nikolsky, S.B.Sakuta, D.N.Stepanov // JETP Letters. 2012. V.96. P.280.