## RADIATION EFFECTS OF NEAR-FIELD IN GAMMA ACTIVATED NANOPARTICLES ZrO<sub>2</sub>-CATALYSTES IN METHANOL CONVERSION

Dikiy N.P.<sup>1</sup>, Dovbnya A.N.<sup>1</sup>, Lyashko Yu.V.<sup>1</sup>, Medvedev D.V.<sup>1</sup>, Medvedeva E.P.<sup>1</sup>, Fedorets I.D.<sup>2</sup>, Khlapova N.P.<sup>2</sup>

<sup>1</sup>NSC "Kharkov institute Physics and Technology", Ukraine;

<sup>2</sup>V.N.Karazin Kharkov National University, Ukraine
E-mail: ndikiy@kipt.kharkov.ua

On the example of a model system of methanol the conversion influence of effects of y-activation of nano ZrO<sub>2</sub>- catalysts is investigated on their functional characteristics in the processes of heterogeneous catalysis. Influence of y-activated nanopowder ZrO<sub>2</sub> on direction and reaction yield was controlled up on the series of experiments at room temperature with ZrO<sub>2</sub> in their initial and the y-activated state. Activating of samples was carried out by bremsstrahlung on high-current electronic accelerator in NSC KIPT at energy of electrons 22 MeV and a current 500 µA. The features of structural transformations in γ-activated ZrO<sub>2</sub> were researched the method of X-ray diffractometry. It was shown that in the structure of ZrO<sub>2</sub> no essential changes and γ-activated particles of oxide keep monophase state and crystallinity of the initial state. Catalytic activity of ZrO<sub>2</sub> before and after their γ-activated was estimated on the absorbency of products of conversion reaction of methanol on the spectrophotometer of SF-46. The found out the sharp increase of activity of ZrO<sub>2</sub>-catalystes after their γ-activated is ascribed to synergy of factors of ionizing radiation - big ionization losses of Auger electrons near a surface ZrO<sub>2</sub> nanoparticles from <sup>89</sup>Zr - and influences of high-reactionary formations of heterogeneous catalysis.