NEW SEARCH FOR DOUBLE ELECTRON CAPTURE OF ¹⁰⁶Cd WITH THE TGV-2 SPECTROMETER

Briancon Ch.², Brudanin V.B.¹, Egorov V.G.¹, Fajt L.³, Hodak R.³, Jose J.M.³, Klimenko A.A.¹, Kovalik A.¹, Rozov S.V.¹, Rukhadze E.N.³, Rukhadze N.I.¹, Salamatin A.V.¹, Shitov Yu.A.¹, Šimkovic F.^{1,4}, Spavorova M.³, Štekl I.³,

Timkin V.V.¹, Yakushev E.A.¹

¹Joint Institute for Nuclear Research, Dubna, Russia;

²Centre de Spetromètrie Nuclèaire et de Spetromètrie de Masse, Orsay, France;

³Institute of Experimental and Applied Physics, CTU in Prague, Prague, Czech Republic;

⁴Comenius University in Bratislava, Bratislava, Slovakia

E-mail: rukhadze@jinr.ru

The new search for double electron capture decay of ¹⁰⁶Cd was performed at the Modane underground laboratory (LSM, France, depth 4800 m w.e.) using the multi-detector spectrometer TGV-2 (Telescope Germanium Vertical) [1]. The detector part of the spectrometer is composed of 32 HPGe planar type detectors with the sensitive volume of 2040 $\text{mm}^2 \times 6$ mm each mounted one over another together with double beta emitters placed between them in a common cryostat tower. Previous experimental runs performed with TGV-2 spectrometer to search for EC/EC, β^+ EC, and $\beta^+\beta^+$ decays of ¹⁰⁶Cd used ~10 g of ¹⁰⁶Cd [2] and ~13.6 g of ¹⁰⁶Cd [3] with enrichment of 75%. As a result, the new experimental limit on 2vEC/EC decay of 106 Cd – $T_{1/2}$ >4.2×10²⁰y (90%CL) [3] were obtained improving existing limits by more than two orders of magnitude and reaching the range of theoretical predictions for this decay [4]. The analysis of KX-KX coincidences obtained in the last run [3] showed a small increase in the number of measured events in the region of ~21 keV (KXPd), which might be the 2vEC/EC decay of ¹⁰⁶Cd. But the statistics was not enough to make any significant claim about the presence of the process searched. A larger statistics should be accumulated with a higher mass of enriched ¹⁰ⁱ⁶Cd in the new experimental run. The new measurement was started in December 2013 with the TGV-2 spectrometer and 16 foils of ¹⁰⁶Cd with enrichment of 99.57%. Investigated foils have a thickness of 70(10) μ m and a total mass of ~23.2 g. The foils of enriched ¹⁰⁶Cd were preliminary measured during 17 days at LSM with a high-efficiency low-background HPGe spectrometer [5] to obtain their contaminations. The limits on 0vEC/EC resonant decay to the excited states of ¹⁰⁶Pd were obtained in this measurement to be $-T_{1/2}(KL, 2741 \text{ keV}) > 0.9 \times 10^{20} \text{ y}$ (90% CL) and $T_{1/2}(KK, 2718 \text{ keV}) > 1.4 \times 10^{20} \text{ y}$ (90% CL).

This work was partly supported by RFBR under grant № 14-02-00568.

^{1.} V.B.Brudanin et al. // Izvestia RAN. Ser. Phys. 2003. V.67. P.618.

^{2.} N.I.Rukhadze et al. // Izvestia RAN. Ser. Phys. 2008. V.72. P.777.

^{3.} N.I.Rukhadze et al. // Izvestia RAN. Ser. Phys. 2011. V.75. P.934.

^{4.} V.I.Tretyak, Yu.G.Zdesenko // At. Data and Nucl. Data Tables. 2002. V.80. P.83.

^{5.} N.I.Rukhadze et al. // Izvestia RAN. Ser. Phys. 2013. V.77. P.424.