NUCLEAR REACTIONS THEORY

SPIN OBSERVABLES IN PD-SCATTERING AND TEST OF T-INVARIANCE

Temerbayev A.A.¹, Uzikov Yu.N.²

¹L.N.Gumilyov Eurasian National University, Astana, Kazakhstan;

²Joint Institute for Nuclear Research, Dubna, Russia
E-mail: uzikov@jinr.ru

A novel test of time-reversal invariance in proton-deuteron scattering is planned as an internal target transmission experiment at COSY [1]. The P-even T-odd observable is the polarization correlation A_{vxz} in scattering of polarized proton beam (polarization $P_{\rm v}$) off polarized deuterium target (tensor polarization $P_{\rm vz}$). This observable provides a real null test of time-reversal invariance for P-parity conserving processes [2]. In order to clarify role of the background conditions of this experiment, it is necessary to know the magnitude of several T-even P-even spin-observables in pd-scattering at energy about 100-200 MeV that is the region of the planned experiment. In the present work, we apply the Glauber-Sitenko theory of multiple scattering for calculation of the differential spin observables of elastic pd-scattering and the total pd-cross sections for polarized proton and deuteron. Actually, we use the formalism of Ref. [3] and develop it for inclusion of Coulomb effects and T-odd pN-amplitudes. Furthermore, we properly modify the formalism of Ref. [3] to provide a comparison with existing experimental data [4,5]. The results of our calculations for unpolarized differential cross section, vector A_{ν} and tensor A_{ii} analyzing powers, spin correlation parameters C_{ii} , $C_{ii,k}$ and spin-transfer coefficients $K_i^{i'}$ in forward hemisphere are found in reasonable agreement with the data [4,5] obtained at 135 MeV and 250 MeV. We show that Coulomb effects improve agreement with the data at those energies at small angles. The total hadronic polarized cross sections σ_1 , σ_2 , σ_3 (as defined in Ref. [6]) are calculated using the generalized optical theorem. The energy dependence of the T-odd total cross section A_{yxz} is obtained within the double scattering mechanism for the forward pd elastic scattering amplitude. The obtained result for σ_1 put a strong restriction on the magnitude of the false vector polarization of the deuterium target ($<10^{-6}$). This restriction is caused by the requirement to reach a planned accuracy of 10⁻⁶ of the $A_{v,xz}$ measurement in the experiment [1].

- D.Eversheim, B.Lorentz, Yu.Valdau. Test of Time Reversal Invariance in Proton-Deuteron Scattering at COSY. COSY Proposal N 215, 2012.
- 2. H.E.Conzett // Phys. Rev. C. 1993. V.48. P.423.
- 3. M.N.Platonova, V.I.Kukulin // Phys. Rev. C. 2010. V.81. 014004.
- 4. K.Sekiguchi et al. // Phys. Rev. C. 2002. V.65. 034003.
- 5. B.von Przewoski et al. // Phys. Rev. C. 2006. V.74. 064003.
- 6. Yu.N.Uzikov, J.Haidenbauer // Phys. Rev. C. 2009. V.79. 024617.