PARTICLE-HOLE STRUCTURE OF FINITE SYSTEMS WITH PAIRING

Lunyov A.V., Mikhajlov V.M., Vlasnikov A.K.
Saint-Petersburg State University, Russia E-mail: vlasnik@list.ru

In order to ascertain how many particle and hole pairs appear in finite superconducting or superfluid systems at various particle numbers N and pairing strengths g in the BCS Hamiltonian ($H_{\text {BCS }}$) the eigenfunctions of $H_{\text {BCS }}$ with a fixed N are constructed as superposition of two particle-two hole excitations. For an even system with $\left(\Omega_{p}+\Omega_{h}\right)$ two-fold degenerate levels among wich Ω_{h} levels are occupied at $g=0$ and Ω_{p} ones are vacant ($N=2 \Omega_{h}$) such functions e.g. for zero seniority can be written in the form

$$
\begin{equation*}
|\Psi\rangle=\beta_{0}\left\{1+\sum_{n \geq 1, s, t} \beta_{s t}(n) B_{s}^{+}(n) \tilde{B}_{t}^{+}(n)\right\}|\tilde{0}\rangle, \tag{1}
\end{equation*}
$$

$|\tilde{o}\rangle$ is the Hartree-Fock vacuum, $B_{s}^{+}(n)=\sum_{\mu_{1} \ldots \mu_{n}} \alpha\left(\mu_{1} \ldots \mu_{n}\right) p_{\mu_{1}}^{+} p_{\mu_{2}}^{+} \cdot \ldots \cdot p_{\mu_{n}}^{+}$, $p_{\mu}^{+}=a_{\mu}^{+} a_{\mu}^{+}, a_{\mu}^{+}$is a particle creation operator in state $\mu, \bar{\mu}$ is a time conjugated state. $\tilde{B}_{t}^{+}(n)$ is analogous with $B_{t}^{+}(n)$ but is composed of hole creation operators $\tilde{p}_{v}^{+}=\tilde{a}_{v}^{+} \tilde{a}_{\vec{v}}^{+}$. In the particle-hole $(p-h)$ representation H_{BCS} is divided into H_{p}, H_{h} and particle-hole interaction v :

$$
\begin{gather*}
H_{p}=\sum_{\mu=1}^{\Omega_{p}}\left(\varepsilon_{\mu}-\lambda\right) n_{\mu}-g P^{+} P ; \quad H_{h}=-\sum_{v=1}^{\Omega_{h}}\left(\varepsilon_{v}-\lambda\right) \tilde{n}_{v}-g \tilde{P}^{+} \tilde{P} ; \tag{2}\\
P^{+}=\sum_{\mu} p_{\mu}^{+} ; \quad \tilde{P}^{+}=\sum_{v} \tilde{p}_{v}^{+} ; \quad v=g\left(P^{+} \tilde{P}^{+}+\tilde{P} P\right) ; \\
{\left[H_{p}, B_{s}^{+}(n)\right]=E_{s}(n) B_{s}^{+}(n) ;\left[H_{h}, \tilde{B}_{t}^{+}(h)\right]=\tilde{E}_{t}(n) \tilde{B}_{t}^{+}(n) .} \tag{3}
\end{gather*}
$$

For systems with equidistant levels at $\Omega_{p}=\Omega_{h}$ and $\lambda=\left(\varepsilon_{F}+\varepsilon_{F+1}\right) / 2$ sets of $E_{s}(n)$ and $E_{t}(n)$ coincide. Energies of zero seniority states and amplitudes $\beta_{s t}(n)$ in (1) $\left(n \geq 1, b_{s t}(0)=1\right)$ are determined by the system of equations:

$$
\begin{align*}
& \beta_{s t}(n)\left[E_{s}(n)+\tilde{E}_{t}(n)-E\right]+g \sum_{s^{\prime} t^{\prime}} \beta_{s^{\prime} t^{\prime}}(n+1)\langle s n| P\left|s^{\prime} n+1\right\rangle\langle t n| \tilde{P}\left|t^{\prime} n+1\right\rangle+ \\
& +g \sum_{s^{\prime} t^{\prime}} \beta_{s^{\prime} t^{\prime}}(n-1)\left\langle s^{\prime} n-1\right| P|s n\rangle\left\langle t^{\prime} n-1\right| \tilde{P}|t n\rangle=0 ; \tag{4}\\
& E=\sum\left[\beta_{s t}(n)\right]^{2}\left[E_{s}(n)+E_{t}(n)-E\right]+ \\
& +2 g \sum \beta_{s t}(m) \beta_{s^{\prime} t^{\prime}}(m+1)\langle s m| P\left|s^{\prime} m+1\right\rangle\langle t m| P\left|t^{\prime} m+1\right\rangle .
\end{align*}
$$

Eqs. (4) include $p-h$ transfer matrix elements, e.g. $\langle s m| P\left|s^{\prime} m+1\right\rangle=\langle\tilde{0}| B_{s}(m) P B_{s^{\prime}}^{+}(m+1)|\tilde{0}\rangle$. Energies $E_{s}(n)$ and $\tilde{E}_{t}(n)$ standing in Eqs. (3), (4) can be calculated by means of recurrent procedure: at first for all n e.g. particle operators $B_{s}^{+}(\omega, n)$ are defined for ω levels $\left(\Omega_{p}>\omega \geq n, B_{s}^{+}(\omega=n, n)=p_{1}^{+} p_{2}^{+} \ldots p_{n}^{+}\right)$, after that operators $B_{s}^{+}(\omega+1, n)$ are expressed through $B_{s^{\prime}}^{+}(\omega, n)$ and $B_{s^{\prime \prime}}^{+}(\omega, n-1)$:

$$
B_{s}^{+}(\omega+1, n)=\sum_{s^{\prime}} \Psi_{s s^{\prime}}(n) B_{s^{\prime}}^{+}(\omega, n)+\sum_{s^{\prime \prime}} \Psi_{s s^{\prime \prime}}(n-1) B_{s^{\prime \prime}}^{+}(\omega, n-1) p_{\omega+1}^{+} .
$$

Amplitudes $\psi(n), \psi(n-1)$ and eigenvalues $E_{s}(\omega+1, n)$ are found with the help of equations:

$$
\begin{gathered}
\Psi_{s s^{\prime}}(n)\left[E_{s^{\prime}}(\omega, n)-E_{s}(\omega+1, n)\right]-g \sum_{s^{\prime \prime}} \psi_{s s^{\prime \prime}}(n-1)\left\langle n-1 s^{\prime \prime}\right| P(\omega)\left|n s^{\prime}\right\rangle=0, \\
\Psi_{s s^{\prime \prime}}(n-1)\left[E_{s^{\prime \prime}}(\omega, n-1)+E_{\omega+1}-E_{s}(\omega+1, n)\right]-g \sum_{s^{\prime}} \psi_{s s^{\prime}}(n)\left\langle n-1 s^{\prime \prime}\right| P(\omega)\left|n s^{\prime}\right\rangle=0 .
\end{gathered}
$$

Thus, several additional diagonalizations are required to solve Eqs. (4). However, at high enough particle numbers (that occures in deformed nuclei and nano-clusters) and at realistic values of g transfer matrix elements between states $\left|s_{0} n\right\rangle$ and $\left|s_{0}^{\prime} n+1\right\rangle$, where s_{0}, s_{0}^{\prime} correspond to states with minimal energies at given n and $n+1$, considerably exceed those between other states [1]. This paves the way to obtain approximate solutions with smaller amount of diagonalization.

The work is supported by the SPbSU grant No. 11.38.648.2013.

1. A.K.Vlasnikov, A.V.Lunev, V.M.Mikhajlov // Bull. Russ. Acad. Sci. Phys. 2013. V.77. P. 880 .
