β -DECAY ⁶⁵Ni \rightarrow ⁶⁵Cu

Kurteva A.A.¹, Mitroshin V.E.²

¹Institute for Nuclear Research, Kiev, Ukraine; ²Kharkov National University, Ukraine E-mail: kurteva@ukrpost.ua

 β -decay ⁶⁵Ni \rightarrow ⁶⁵Cd has been described by means of the method offered in [1]. Quasiparticle and multy-phonon states (up to ten phonons) of main band of even-even core, as well as influence of vacuum fluctuations of quasiparticles to reduced probabilities of beta-transitions are taken into account.

The $\hat{\beta}$ transitions with maximum intensity and probability occur from the ground state of ⁶⁵Ni, the main contribution in which gives neutron one-particle state $f_{5/2}$, to $3/2_1^-$, $5/2_1^-$ and $7/2_1^-$ states of ⁶⁵Cu, the main contributions in which give the proton one-particle states $p_{3/2}$, $f_{5/2}$ and $p_{3/2}$ accordingly.

The comparison of experimental and calculated lg ft are present in the table.

I^{π}	3/2_	5/2	$7/2_{1}^{-}$
Е	0	1115.6	1481.8
I,%	60	10.18	28.4
lg ft, exp.	6.6	6.1	4.9
lg ft, cal.	6.6	6.3	4.6

The renormalization of weak interaction constants in this calculation was the same as for the nuclei with 31 < A < 231. Hence, it does not depend of Fermi surface of nuclei, so and from Fermi and Gamow-Teller resonances.

1. I.N. Vishnevskii, G.B. Krygin, A.A. Kurteva, et al. // Yad. Fiz. 1994. V.57. No1. P.17.