ИЗМЕРЕНИЕ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ ИМПУЛЬСНОЙ ПЛАЗМЫ ПИРОМЕТРОМ С ПЗС-МАТРИЦЕЙ SONY ICX415AL

И.С. Никончук, А.Н. Чумаков

Институт физики НАН Беларуси, пр. Независимости 68, 220072 Минск, Беларусь, nick@imaph.bas-net.by

Abstract

The optical pyrometer based on CCD SONY I415AL was created in order to monitor the processes of pulsed plasma modification of materials. Spatio-temporal distribution of spectral brightness and temperature of the surface obtained with a pyrometer allow us to estimate its contribution to the process of plasma surface modification of materials processed.

С целью контроля процессов импульсной плазменной модификации материалов создан оптический пирометр, обеспечивающий определение яркостной температуры плазменных образований с пространственновременным разрешением. В основу оптического пирометра (рис. 1) положена система регистрации оптического излучения на базе ПЗСматрицы ICX415AL, управляемая персональным компьютером.

 1-3 – пирометр на основе матрицы ICX415AL; 2 – фильтр №87017 на 516 нм; 3 – объектив Юпитер-21А; 4 – набор нейтральных
светофильтров; 5 – светоизмерительная лампа СИ10-300у; 6 – амперметр М-104; 7 – стабилизированный источник питания СИП 30

Рис.1. Схема калибровки пирометра по эталонной лампе СИ10-300у

Пирометр калибровался по значениям спектральной энергетической яркости эталонной светоизмерительной лампы СИ10-300у, калиброванной в интервале от 0,3 до 2,5 мкм в Саратовском центре стандартизации и метрологии (рис. 1). Питание лампы осуществлялось постоянным током от стабилизированного источника питания СИП-30. Величина тока

контролировалась амперметром типа М-104. Схема экспериментальной установки для калибровки пирометра по эталонной лампе приведена на рисунке 1, параметры установки сведены в таблицу 1.

Таблица 1 Параметры экспериментальной установки для калибровки системы регистрации

Система регистрации оптического излучения	No: 200807-14-02-
на основе матрицы ICX 415 AL	07500-016-05-00479
Размер матрицы фотоприемника	7,48 мм×6,15 мм
Размер пиксела	8,3 мкм×8,3 мкм
Объектив	Юпитер-21А
Фокусное расстояние объектива, f	200 мм
Диафрагма, D	16
Шкала расстояний, значение	2,4
Блок питания	СИП30
Амперметр (класс точности 0,5)	M-104 №
Лампа	СИ10-300у №70
Ширина излучающей ленты эталонной лампы	3 мм
Ширина изображения излучающей ленты	0,432мм
эталонной лампы на матрице фотоприемника	(48 пикселей)

Спектральная яркость плазмы рассчитывается по формуле /1/:

$$B_{nn} = B_{\mathfrak{I}m} \frac{\Omega_{\mathfrak{I}m}}{\Omega_{nn}} \frac{S_{\mathfrak{I}m}}{S_{nn}} \frac{\tau_{\mathfrak{I}m}}{\tau_{nn}} \frac{I_{nn}}{I_{\mathfrak{I}m}}, \qquad (1)$$

 $\Omega = \frac{\pi}{4} \frac{f^2}{D^2 \cdot L^2}, \quad S = K_y^2 \cdot d_{pixel}^2,$ формула (при использовании одного и того же объектива) преобразуется:

$$B_{nn} = B_{\mathfrak{M}} \frac{D_{nn}^{2}}{D_{\mathfrak{M}}^{2}} \frac{L_{nn}^{2}}{L_{\mathfrak{M}}^{2}} \frac{\tau_{\mathfrak{M}}}{\tau_{nn}} \frac{\Delta t_{\mathfrak{M}}}{\Delta t_{nn}} \frac{K_{\mathfrak{Y}\mathfrak{M}}^{2}}{K_{\mathfrak{Y}\mathfrak{M}}^{2}} \frac{I_{nn}}{I_{\mathfrak{M}}}, \qquad (2)$$

где B_{nn} – спектральная яркость плазмы; B_{3T} – спектральная яркость эталона; D_{nn} – диафрагма (плазма); D_{3T} – диафрагма (эталон); L_{nn} – расстояние от объектива до мишени; L_{3T} – расстояние от объектива до эталонной лампы; τ_{nn} – коэффициент пропускания набора светофильтров (плазма); τ_{3T} – коэффициент пропускания набора светофильтров (эталон); Δt_{nn} – время экспонирования плазмы; Δt_{3T} – время экспонирования эталона; K_{nn} – коэффициент увеличения оптической системы регистрации (плазма); K_{3T} – коэффициент увеличения оптической системы регистрации (эталон); I_{nn} – амплитуда сигнала плазмы; I_{3T} – амплитуда сигнала эталона.

Параметры регистрации амплитуды сигнала эталонной лампы приведены в таблице 2.

Таблица 2. Параметры регистрации		
Спектральная яркость В _{эт} на длине волны 516 нм (в		
максимуме пропускания фильтра №87017, λ _{max}	$2,4.10^{-17}$	
=516 нм, $\tau_{516max} = 0,7211, \Delta \lambda_{516} = 24$ нм)		
Расстояние L (от объектива до эталонной лампы)	165 см	
Экспозиция регистрации Δt_{3T}	3,582 мс	
Коэффициент увеличения (уменьшения)	6,94	
оптической системы регистрации К _у		
Пропускание фильтров		
Фильтр №87017 на 516 нм ⇒ 72,11%	$\tau_{516max} = 0,7211$	
Фильтр HC-7 (3 мм) ⇒ 40,3%	$\tau_{\rm Hc7} = 0,4030$	
Фильтр HC-8 (3 мм) ⇒ 14,50%	$\tau_{\rm HC8} = 0,1450$	

С помощью программного обеспечения для системы регистрации CCD Image было отснято 3 кадра, и выведены результаты для центральной области матрицы и на расстояниях 200 пкс влево и вправо (рисунок 2).

Среднее значение амплитуды І_{эт}=10800 (это значение используется для расчета спектральной яркости плазмы).

Созданный пирометр используется для определения пространственного распределения яркости приповерхностной плазмы при исследовании процессов импульсно-плазменной и лазерно-плазменной модификации материалов. Типичные фотографии свечения лазерной плазмы на стальной мишени при ее облучении в воздухе импульсным излучением неодимового лазера (λ =1,06 мкм, τ =80 нс) представлены на рисунке 3.

диафрагма 11; нейтральные фильтры: НС7, НС13; экспозиция регистрации 1мс

Рис.3. Фотографии лазерной плазмы (слева) и профили ее спектральной яркости на λ=516 нм (справа, T_{max}= 4112 и 4018 К) у поверхности стальной мишени

Пространственный профиль спектральной яркости плазмы B_{xy} определяется по профилям зарегистрированных сигналов пирометра из формулы (2) с учетом условий регистрации (экспозиции и времени свечения плазмы, значений диафрагмы, расстояния съемки и пропускания фильтров). Полученные данные с использованием формулы Планка обеспечивают расчет распределения яркостной температуры плазмы.

Получаемые с помощью пирометра пространственно-временные распределения спектральной яркости и температуры приповерхностной плазмы позволяют оценить ее вклад в процессы плазменной модификации поверхности обрабатываемых материалов.

Список литературы

 Спектроскопическая диагностика эрозионной лазерной плазмы / Баканович Г.И. [и др.]. – Минск, 1978. – 30 с. – (Препринт / НАН Беларуси, Институт физики. – №149).