ПОЛУЧЕНИЕ И СЦИНТИЛЛЯЦИОННЫЕ СВОЙСТВА МОНОКРИСТАЛЛОВ НА ОСНОВЕ БРОМИДОВ РУБИДИЯ И КАЛЬЦИЯ, АКТИВИРОВАННЫХ ЕВРОПИЕМ

Гриппа А.Ю., Реброва Н.В., Горбачева Т.Е., Педаш В.Ю., Чергинец В.Л., Тарасов В.А.

Институт сцинтилляционных материалов НАНУ, Харьков, Украины, a_grippa@mail.ru

В последние годы в ходе поиска новых неорганических сцинтилляторов много внимания уделялось сложным галогенидам состава $CsMX_3$: Eu^{2+} (M=Ca, Sr; X=Cl, Br, I), имеющим структуру перовскита. Это обусловлено тем, что $CsMX_3$, активированные Eu^{2+} , могут быть перспективными с точки зрения использования их в качестве гамма-детекторов.

Настоящая работа была посвящена исследованию люминесцентных и сцинтилляционных свойств не изученного ранее RbCaBr₃:Eu²⁺, кристаллизующемуся в структуре перовскита. Поскольку данный сложный галогенид плавится конгруэнтно при 742°С, получение кристаллов данного состава представлялось вполне возможным. Шихта для выращивания монокристаллов RbCa_{1-x}Eu_xBr₃ (0 \leq x \leq 0.08) готовилась смешиванием исходных галогенидов CaBr₂, RbBr (осч) и EuBr₂, взятых в соответсвующих стехиометрических пропорциях. Бромиды кальция и европия получались предварительно растворением соответствующих карбонатов в бромистоводородной кислоте с последующим упариванием и сушкой в присутствии NH₄Br. Монокристаллы RbCa_{1-x}Eu_xBr₃ (0 \leq x \leq 0.08) выращивались в вакуумированных запаянных кварцевых ампулах методом Бриджмена-Стокбаргера в вертикальных печах с градиентом температур в зоне роста 5°С/см и температуре на диафрагме 745°С. Скорость движение ампулы вниз составляла 3 мм/ч.

Наилучший световой выход был получен в случае $RbCa_{0.92}Eu_{0.08}Br_3$ и составил 47% от NaI:Tl. Максимум на спектре радиолюминесценции $RbCa_{0.92}Eu_{0.08}Br_3$ соответствует 443.5 нм. Кривая затухания сцинтилляционного импульса описывается одноэкспонентной функцией со временем затухания (3.5542 \pm 0.0013)µs.