Journal of Classification 17:51-65 (2000)
DOT: 10, 1007/ s 0035 70000004

Robust Classification of Multinomial Observations
with Possible Qutliers

Yu. S. Kharin E. E. Zhuk

Belarusian State University Belarusian State University

Abstract: Cluster analysis problem of a mixture of multinomial random observa-
tions is considered with the presence of outliers in the sample. Robust decision rule
based on the truncation principle is proposed and investigated.
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rule; Truncation principle.

1. Introduction

Many effective clustering algorithms are already developed with
hypothetical model assumptions about observations: independence, absence
of missing and outlying data, continuous and Gaussian probability distribu-
tions of sample elements, etc. (e.g.. Bock 1989; Bock 1996; McLachlan
1992; Hartigan 1975; Anderberg 1973). But the hypothetical model assump-
tions are often violated in practice (Huber 1981; Hampel, Ronchetti,
Rousseeuw, and Stahel 1986; Kharin 1996) and the classical clustering
methods usually forfeit their optimality properties as a consequence (cf.,
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Kharin 1996; Khann and Zhuk 1993). In this sitwation, stable (robust) cluster-
ing procedures are necessary. The monograph of Kharin (1996) and some
papers (e.g., Kharin and Zhuk 1993) were devoted to this problem of stability
(robustness) in clustering of continuous multivariate observations.

But in some applications the observations can be integer-valued:
empirical investigation of different medicament effects in medicine, detection
of nonhomogeneity in contingency tables (e.g., Kendall and Stuart 1967: Lui
1996), processing of guestionnaire forms in sociology, etc. (e.g., Anderberg
1973; Abusev 1998). For this case we need new special clustering methods
intended for processing of discrete data.

In the present paper the problem of cluster analysis of discrete (multi-
nomial) random observations is investigated, assuming the presence of
outliers.

2. Mathematical Model

Let a complete system of k 2 2 random events [A;}ew. K = {1.... kL
be partition on a probability space (1,F,P):

ﬂ:luxﬂ;-.ﬂ:EF: H;ﬁﬂj=gﬁf:‘-‘jEK- (11
€

The observations are obtained by » series of experiments [E, }7-;. The senes
E, consists of m, independent experiments. Each experiment results in an
event from {A; };e x. The results of the ¢-th series E, are recorded by a random
teger-valued k-vector (1 = 1,n):

X, =(X,y.....Xz) e NE, N, =1{0,1,2,...}, (2)

where **7" is the transposition symbol, X, is a random number (frequency) of
the appearance of 4; in E,. Note that

E Xy =m,
lek

is the total number of experiments in the z-th series.

An observation X, belongs to one of L =2 classes {€,...., Q)
Die §,5={1,...,L},is arandom index of the class from which the obser-
vation X, onginated, and

n,=P{D'=i}>0, ieS, 3)

are the prior class probabilities: m;+..+%; = 1. Given the fixed D} = i, a ran-
dom vector X, € N! has a conditional multinomial probability distribution

(p.d.)
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PIX, =x1D} =i) = gq(x;07,m,) (4)
m,! X , .
= ——[I6H", xe ¢*m,), ie §:
Huﬁ:x‘! fEnh’
QE{HI:!= {I={I|,.....T_|=]'E Nf, Z.II;=HI].

ek

where 87 = (8f),...,8})" is the vector of conditional probabilities, which
characterizes the class ;;

i =P{A 1D} =i}>0 (3)

is the conditional probability of the event A, (I € K) from the complete sys-
tem of events (1) under fixed class index D? =i (i € 5): Ziep @y =1. Itis
assumed that all L vectors 09, . .. 8¢ are distinct.
. The cluster analysis problem consists in the classification of the sample
’J_!ZHI = {X,)f=1 of size n, ie., in the construction of a statistical estimator
D=DX)= (Dy,....D,)" € 8" for an unknown random classification vec-
tor ¥ = (DY, ....D}) € 8" with unknown class characteristics {707 }ies.
But in practice (e.g., McLachlan 1992: Kharin 1996) the sample X"
usually contains some outliers. In this situation an observation

X=(X,....X) e NS, T X, =m, (6)
lek

from the class Q; (where its class index D” = { is fixed) can be described by
the conditional Tukey-Huber p.d. (e.g., Huber 1981):

PIX=x|1D"=i{) =p(x:8¢,m)
= (1 -g)g(x;87 .m) + £,9(x:07 ,m) :
xe Q%m), 0<¢g;<e,; <1, i€ 8§,

where €, is the so-called contamination level for €;; g(x;87.m), 87 =07, is
the contaminating multinomial p.d. If €,; = 0, then there are no outliers in the
class £;. The unconditional p.d. of an observation X:

P{X =x} =p"(x) = ¥ mp(x;0!,m) (7
ies
=¥ ®iq(x:87,m) + 1 h*(x)
el

i1s in this situation a mixture of L + 1 p.d.’s, which determine L + 1 classes
(£0.Q,...,Q;}. As under the hypothetical model (where the contamina-
tion level €, = max;c€,, is equal to zero) the classes [€2;};c¢ have the
hypothetical conditional p.d.'s {g(x;8],m)];c5, but their prior probabilities
are different from (3):
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T =P{d" =i}=n(l-¢), ieS§. (8)
The additional class €); containing outliers has the prior probability:
T=1-Yn =Y e, (9)
oY €5

and is described by the mixture of contaminating p.d.’s:

T, &
h*(x)= ¥ —— q(x;6},m). (10)

ies
Assuming outliers while solving this cluster analysis problem we need to con-
struct the robust (vis-a-vis outliers) decision rule (DR):
D=DX")=(D,,....D,) e S",
S,={0}wS=1{01,...,L},

which classifies the observations from the contaminated sample X~ = {X,}".,
nto the L + 1 classes {£};},.s . The observations attributed to the class £,

are considered as outliers.

3. Optimal Discrimination of Multinomial Observations for
the Hypothetical Model

First, consider the hypothetical model where outliers are absent
(€, = 0) and all class characteristics {n;,8 };as are known a priori. In this
case we need to classify the observation X defined by (6) and described by
models (3)-(5).

Note, that the Bayesian DR (see Kharin 1996, Section 1.5)

d,(X) = arg max {7 g(X:07,m)} (11}
rE

=argmax{lnm + ¥ X, In6j)
€3 ek

has the minimal risk (classification error probability):

r, =P {d,(X)=D") (12)
=1- ¥ max{mq(x;87,m)}.
xe ' (m) fes

Let us investigate the asymptotics m — + o=. We introduce the follow-
ing notation:
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: 6
K'(67,0)= % 04In— 20
ek 'Bj.’
is the directed Kullback (1959) divergence between classes , and &
(i,j € S), @(-} is the standard Gaussian distribution function with the proba-
bility density function:

0z) = - 0() = o7 exp (~22/2), ze R,
and Ni(l,X} is k-variate Gaussian probability distribution law with expecta-
tion vector L € R* and covariance (k x k)-matrix Z, which can be singular; if
det (X} = 0, then N.(L,X) is the k-variate singular Gaussian distribution law.
Also let us introduce the vector Y of the empirical frequencies of the events
(1) corresponding to the observation X from (*):

X
1?=“]_K={YE,...,FR:|’; }';=—!E{LEF;=I. “3}
m m

ek

Theorem 1. Let the prior class probabilities (3) and the class-specific condi-
tional probabilities (5} (the elements of the k-vectors {8 }ic5) be separated
from zero:

>0, 85>0,lekK, ie§. (14)
Then form — + o the DR
de(Y)=argmax { ¥ ¥ In0}} (15)
€5 ek

is asymptotically optimal in the sense that the risk r. = P{d«(Y)= D"}
satisfies the asymptotics:

?'-J"r”—}l. {]ﬁ}

where r,, is the minimal risk value (12) attained by the Bavesian DR (1] ).
Also the following asymptotic statement holds:

re/r—=1, (17)
where

F:F{m]: | (18)

K .

~TuPiA [T In—+ Vm K"(67,67)20
el JeS |lek Ejﬂ'

J*e
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2V = (.. ..,z € R* is a random k-vector with singular Gaussian dis-
tribution Ny(0,,W(B)), where 0 is the null vector of R* and W(8) is the
Jollowing singular covariance (k x k)-matrix (i € S):
WIB) = (w07 jek -

a 05, if 1#];
) i - iy L]
wiO0 = oe (1 8, if 1<
Proof. The result in (16) is proved by applying the risk asymptotic expansion
method (cf., Kharin 1996} to the Bayesian risk (12) at m = + ¢ under condi-
tion (14).

As in Kharin (1996, Section 1.5), using the normal (Gaussian) approxi-

mation for the conditional p.d. (given the fixed class index D” =i, i € 5) of
the random vector (13):

Vm (Y = 87)=> Ny (0, W({)), m — + oo,
we obtain (17),(18). =

Corollary 1. If under the conditions of Theorem | a value v" > 0 exists such
thatfori#je §

ln— -
_ﬂ

V(67,82 = 1/ 85

ek lek Bﬁ

then for L 2 2 classes the following inequalities hold (m — + ==):

K'(87,9°
<y mnd -‘t'ln_'i‘nlin(;i—} :

ie§ jes V(87,87)

=
and for the case of two classes (L = 2):
- — K (81,85 1.
F=m® | - Vm K61.89) + ® | - N\m ———= K(63,60) . (20)
V(07,83) V(83,87)

From the results of Theorem 1 it follows that for a large number of
experiments {m — + <) in the series from which the observation X is on-
ginated the asymptotic DR (15) can be used instead of the exact Bayesian DR
(11). At m = + == the value r = r(m) from (18), (20) can be used as the
approximation of the risk. Note, unlike the Bayesian DR d,(-) the DR d.(-)
doesn’t depend on the prior class probabilities {m;};.5.
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4. Robust Clustering Procedure Based on the Truncation Principle
4.1 The Truncation Principle and the Robust Clustering Procedure

Now, let us investigate the situation with outliers (g, > 0), and use the
truncation principle already applied in Kharin and Zhuk (1993) to construct
the robust DR based on the truncated minimum contrast estimators of
unknown parameters for the case, where the classes {£);},. s are described by
continuous p.d.'s. )

To classify the sample X" = {X,}7., with outliers, we use the truncated
DR dS(Y:8”) € S,, 6°=((8]),...,(00))", which is obtained from the
asymptotic DR (15) by the truncation principle:

arg ma;{ 2. Yiln 6}, ':fmigl K(Y,00)=C;
I1E

d?{'t’.ﬂ-“] - €Y ek

0, otherwise. 2n

Here

r Y
¥ (Y;-6%)In —, if min ¥, > 0;

8 ek
oy _ |IEK il
K(Y.8{) = + oo, otherwise;

15 the symmetnc Kullback distance between the observed freguencies
Y=(¥),,....,¥,) and the class-specific probabilities 8] = (87,,...,85%)"
C € (0,+ =] 15 a truncation parameter which will be further evaluated. If
C = + oo, then d5(-;8”) = d.(-) is the DR (15).

The clustering procedure based on the truncated DR (21) consists of

the following steps.

1. The observed sample X" = (X, }[= formed by the n observations
(2} 15 transformed to the sample Y = (Y,)7=. where

! .
Yy =X, =(Yyp,.... Y)Y,
m;

Y, = xﬂ' _ x:!
i = o *
i, EJEK X:_:‘

is the k-vector of the empirical frequencies of the events (1) in the
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t-th series of experiments. Then L = 2 points from v = {Y, )

(0
are arbitrarily chosen as the initial estimates {El bies of the
unknown parameters {07 },.s.

I

Qﬂn} I!"E-.} p—t!‘lw step  (p=12.) the estimate
D" =(Dy ,....D, ) e S" for the unknown classification vec-

tor D" e §7 is evaluated:

ﬁ?} = ﬂg{Yr:ﬂw-l}}, r=1,

where the applied DR d<(- ;E{F_”] 1s obtained from the asymptotic
“::Ja"u cated - ]} DR ['?]]l by substituting
8" " =((8 L@ ]’] instead of the unknown compo-
site vector 6 -{{El‘{]l',,. 1)) of the parameters {8”},.;.
Then the estimates for {6 },E 5 are adjusted:

-1
2 il X oY, ieS.
=] =1

EI'-FJI

Here 0;, = {1,if j = i;0,if j # i} is the Kronecker symbol.

- o (p—i _ . . :
If DW = D“"} : (p 2 2), then this iterative process is terminated.
and D:=D" ¢ S5 15 the final estimate for D” € S, which deter-
mines L + 1 clusters EQ{. !’.'1. ..... Q.L}:

Q={X,: D" =i}). ies,.

The observations from the cluster are considered as outhers.
Note, the estimate 6= Elt'n for the unknown
8% = ((87)", ..., (87)") is also constructed by this procedure.

sk

4.2 Evaluation of the Truncation Parameter

The main problem in the clustering procedure proposed above is to
determine the truncation parameter C € (0, + ==]. To solve this problem. let
us investigate the behavior of the nisk:

/C = PldS(Y:i8") = D%), ¥ =X, (22)
m

for the truncated DR (21) for classifying an observation X described by the
model (7)-(10) (D € §,) considering C as a parameter.
First, let us prove the following helpful lemma.

Lemma 1. If a random k-vector X has the multinomial p.d.:
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P{X =x} = g(x:0,m), xe 0*m):
8=(0,,....8,)",
then for m — + ce:
Pim -K(Y,0)<z) > Fa (z), 220, (23)

where F: (-) is the probability distribution function of the X*-distribution
with k ~ | degrees of freedom.

Forany 8 =(8,,....8;), %,.¢0, =1, 0< 8; < 1, if the Euclidean
norm of the vector 8" ~@ is separated from zero: 10° =81 > 0. then ar
m — + o2

P xf;}:'::xw;ﬂ IEL(CL5) I I R, (24)
V(6,67
where
o " {E? = B;]i . L
V(0,8") = —— +2K(0,8") + (V(8,8")) .
ek 6

and V(0,8") is defined by (19),

Proof. According to Lemma 1 a random k-vector X has the multinomial p.d.
q(x:0.m),and for Y = lX we have:
m

Vim (Y = 8) ~> Ny(0, W(B)), m s + oo (25)
W(B) = (wy;(0))) e wyi(0) = {Er;]ﬁiﬂﬂ;]‘ :::5;:';
To prove (24), let us use the well known Cramér theorem (see, for
example, Anderson 1958, Theorem 4.2.5):
Vm(K(Y,8") - K(8,8")) ~> (26)
N1 (0.(VoK(8,87))'W(B) VoK (6,07) ,

where for VgK(8,8") = {d—§+,ﬁ' (8,0 e k-
I

d w d L] le B; B;
d_ == (0,-8)In—=| = 1 - _jp == ek 27
a6, 89 =20 f“ ””a;} o, "9 '€ (27)

and | VgK(8,0") | = 0 because of 18° -0 | > 0. Note that
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(VoK(8,8"))'W(8) VoK(8,8") = (V(6,8"))

and the relation (24) holds.

In attempting to prove (23) under a.ssumptmn that 8" = 0, the asymp-
totic relation (26) can’t be used: ‘i’gﬂ' (6,8°) 1 =g = 0,. Use the fact that for
m — +9o a random variable Ym (K(Y,8) - K{E 8)) = ﬁK[Y B) has the p.d.
which coincides with the p.d. of the random variable

L\ (Y - 8) V3K(8.6") lg-_o(Y - O)Von (28)

Evaluate V3K(6,0°) | g_5. From (27) we obtain:

d
d8;d8,

3

ViK(8.8") =

x(ﬁ,a“:l
ljek

d . 0 if I j:
E1E — L] L]
d8;de, SRS

[
— 4 — ifl=],
L8f 6

and

2 . 1 1
VK(6,6") 1 gp = 2 dmg{ﬁl ’a,:"

From (28) and the last equation it follows that for m — + o the p.d. of random
variable Vin K(Y,8) coincides with the p-d. of random vanable

(m (¥, -8)) 5 (X, — m8))?
le K 8 le K m, '

which has for m — + = the X*-distribution with k — 1 degrees of freedom. =

Theorem 2. If under the conditions of Theorem 1
187 -071>0, (je S,
then the risk (22) of the DR (21} has the following representation:

r$ =rt= +0f -HE (29)

where rg” = P{d.(Y)# D"} is the risk of the asymptotic DR (15} (without
truncation: C = 42,
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af =¥ m(l-¢) (30)
1Y

xP{{d.(Y)=1{) ﬁ{mi?ﬂ'i’.ﬂj-‘léfl- I D" =i} ;
Je

af <0-£)5, & =1-Fg_ (m-C),

and
HE = ¥ me, P{minK(Y.8")>C 1D’ =0} <HC : 31)
jes (65 .
-c Ym(K(8*,87) - C
He, = min ¥ 7, ® { -{ =
€5 jo¢ V(8;7.67)

Proof. The relation (29) is the representation of the risk (22) of the DR (21)
which is directly obtained from (22);

re. =1-Y m(l —g)P{dS(Y;8°) =i | D =i}
el
-3 me; - P{dS(Y:0°) = 01 D* = ()
JES

=r;':* +af_—-HE.

The inequalities (30) and (31) follow from the results (23) and (24) of
Lemma 1 respectively. For of we have:

of, € ¥ m(1 —¢)P{min K(Y.8/)2 C 1 D* = i}
i€ j&s
<Y m(1-e)P(K(Y.0)2C 1D =i} (1 -£.)a" .
ie§
The inequality (31) is proved analogously. =

Let us analyze expressions (29)-(31). The value HE 2> 0 characterizes
the positive effect of truncation: the larger HS the more effective the trun-
cated DR (21) (the smaller its risk rE). The value ﬂzE = 0 describes the

negative effect: because of truncation we forfeit some information, and the

nisk increases by the value oS

.
*

Corollary 2. If the truncation parameter C satisfies the asymptotics:

m-—y+e, £ 50, Co+ee, and (1-Fy (m-C)/e, =0, (32)
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then

.rE_ =r; - Hg + o(E.), (33)
where HE_ = O(e,) 2 0 is the value from (31), and O(-), o(*) are the Landau
symbols: O, )/e. = v, Iv1=>00(e,)/e, =2 0fore, =0

F:&m_ﬁ Under the asymptotics (32) for the value &c from (30) we have:
& = o(g,), and in the formula (29): af = o(g,) because of the inequality
(30) holds. From (31) it follows that HS = O(g,). =

Note that the asymptotics in (32) allow one to determine the truncation
parameter. But in practice the contamination level £, is often unknown. In
this situation we propose to determine the truncation parameter by the X84
rule of Hampel (Hampel et al. 1986): all the points which are far from their
mean more than 5.2 times the standard deviation must be rejected. In our case
using the results of Lemma 1 and the properties of the X ?_distribution, we
obtain:

5.2¥2(k -

m

C = Clmk) = D k>2. (34)

Let us analyze how this choice {34}1!:cunfﬂrms to the asymptotics in
(32). Under (34) for the value o =1- Fﬁﬂ{m -C), we have:
@ =1-Fg (52¥2(k—1)). The values of & = & (k) are presented in
Table 1.

From Table 1 it is seen that, for example, under £, 2 0.1 and k = 11, the
value @ is less than €. in order, and the choice (34) is acceptable.

Note that the truncation parameter depends on the number of experi-
ments m in the series to which the observation X corresponds. In the cluster-
ing procedure constructed above we must evaluate the truncation parameter
by the relation (34) for each observation: C = C{m,,k),1 = 1,n.

5. Computer Results

We now investigate the proposed clustering procedure experimentally.
The performance is characterized by the expenimental frequency of error
decisions in classifying hypothetical observations:

if D, # DY and D! #0;

n 1‘
mp ¥ :
e 0, otherwise,

y= (35)
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Table 1: Values of & = &°(k) for the choice of the truncation parameter C

by the X84 rule

k 2 3 i 5 6 7 11 16
a“ | 0.0067 | 0.0055 | 0.0052 | 0.0053 | 0.0057 | 0.0062 | 0.0098 | 0.0187

Table 2: Experimental results

Frequency of emmors
Sample | Numberof | Robust Classical
number outhiers alpﬂ'tl:m dﬁnrll.hm
1 6 0.088 0.235
2 4 0.056 0.167
3 4 0.111 0.361
4 7 0.061 0.273
5 3 0.114 0.200
6 3 0.054 0.135
7 9 0.161 0.355
8 6 I 0118 0.206
9 8 0.094 0.219
10 5

0.086 0.171
|Tula! | 57 | 0.093 | 0.230 I

where
- /]
H= E Eﬂ:‘iﬂ
r=1

is the number of outliers in the sample X" = {X,}"_, of size n.

As the example consider the case of two (L =2) equiprobable
(my; = ma = 0.5) hypothetical classes £, £); in the presence of outliers
(€) = & =0.15):

v =(0.4,02,02,0.2)":
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¢ =(0.2,0.2,02,0.4)";
+ =083 =(0.25,0.25,0.25,0.25)".

Using a Monte Carlo method, ten independent samples are generated. Each
sample has the size n = 40 and contains observations produced by a series of
m = 50 experiments. For the each sample the classical algorithm (without
truncation: C = +o) and the robust truncated procedure (C is evaluated by
the formula (34): m = 50, k = 4) are applied, and the experimental frequency
of error decisions 7y is evaluated by formula (35). The results are presented in
Table 2.

To summarize the numerical results the total experimental frequency of
error decisions is evaluated (all n = 400 observations are considered as one
sample). Table 2 demonstrates that the robust algorithm essentially improves
the clustering performance (approximately twofold). Note that for this
numerical example, according to formula (20): 7 = #(50) = 0.030, where r is
the asymptotic risk value attained by the asymptotically optimal DR (15) for
the hypothetica! model (when outliers are absent and all class characteristics
are known a priori). Table 2 also shows that for the robust algorithm the 1otal
experimental frequency of error decisions is close to this asymptotic value.
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