УДК 546.56:541.621:541.141.7

ВИТАЛИЙ Э. МАТУЛИС, Д. М. ПАЛАГИН, А. С. МОЖЕЙКО, О. А. ИВАШКЕВИЧ

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ АДСОРБЦИИ МОЛЕКУЛЫ NO НА НЕЙТРАЛЬНЫХ, АНИОННЫХ И КАТИОННЫХ КЛАСТЕРАХ Аg₈

В последние годы кластеры металлов привлекают пристальное внимание исследователей. Активно изучаются каталитические свойства кластерных систем. Кроме того, кластерная модель является эффективной при моделировании процессов адсорбции и гетерогенного катализа [1, 2].

Адсорбция молекулы NO с последующим ее восстановлением представляет собой интересную и актуальную научную проблему. Оксид азота (II) является одним из главных источников загрязнения атмосферы, выделяемым в больших количествах, в том числе и двигателями внутреннего сгорания. Было показано, что частицы серебра способны катализировать процесс восстановления оксидов азота [3—6]. Этой проблеме посвящен ряд теоретических работ. В частности, взаимодействие молекулы NO с малыми кластерами серебра изучалось в работах [7—9].

Ранее [9] нами было проведено исследование взаимодействия молекулы NO с тетрамерами серебра и меди. Показано, что наибольшим значением энергии характеризуется взаимодействие NO с кластерными анионами. В работе [10] нами проведено исследование адсорбции малых кластеров серебра на поверхности рутила. Следует отметить, что частицы серебра, нанесенные на поверхность некоторых оксидов металлов, являются эффективными катализаторами процессов восстановления оксидов азота [3—6]. В работе [10] нами установлены участки поверхности TiO₂, предпочтительные для адсорбции кластеров серебра, а также определена структура наиболее стабильного кластера Ag_8 на поверхности TiO₂.

В настоящей работе нами исследовались энергетические и геометрические характеристики различных структур, отвечающих взаимодействию NO с нейтральными, анионными и катионными кластерами Ag₈. Целью исследования являлось определение геометрических параметров наиболее стабильных структур Ag₈—NO, изучение механизма связывания, а также выявление факторов, способствующих фрагментации молекулы NO при взаимодействии с кластерами серебра.

Нами рассмотрены две различные структуры кластера Ag₈: наиболее стабильный кластер в газовой фазе, характеризующийся группой симметрии

Puc. 1. Исходные структуры кластера Ag₈:
I — наиболее стабильный кластер в газовой фазе; II — наиболее стабильный кластер, адсорбированный на поверхности TiO₂, фрагмент периодической структуры (II, *E*) и индивидуальный кластер (II, *A*)

 D_{2d} [11] — структура I, и наиболее стабильный кластер, адсорбированный на поверхности TiO₂ [10], характеризующийся группой симметрии C_1 — структура II. Обе структуры изображены на рис. 1.

ПРОЦЕДУРА РАСЧЕТА

Все расчеты проводились в рамках теории функционала плотности (DFT). Для расчетов применялся разработанный нами ранее функционал S2LYP [12]. Для атомов серебра использовался базисный набор LANL2DZ с эффективным потенциалом остова, включающим 28 электронов [13], для атомов азота и кислорода был использован базисный набор D95V(d) [14].

В случае структуры I проводилась полная оптимизация геометрических параметров комплекса Ag_8 —NO, в то время как для структуры II координаты атомов серебра в процессе оптимизации были «заморожены» для сохранения исходной геометрии кластера, соответствующего структуре, адсорбированной на поверхности рутила.

СТРУКТУРА І: НАИБОЛЕЕ УСТОЙЧИВЫЙ КЛАСТЕР В ГАЗОВОЙ ФАЗЕ

Молекула оксида азота (II) может выступать как в качестве донора, так и акцептора электронов. Свойства π-акцептора для NO более характерны [15], однако тип электронного эффекта зависит от природы частиц, взаимодействующих с молекулой NO. При взаимодействии с частицами, легко отдающими электроны (например, металлами), NO проявляет свойства π-акцептора. В этом случае частичный перенос электронной плотности с орбиталей металла на π-разрыхляющую орбиталь NO приводит к удлинению связи N—O и уменьшению соответствующей колебательной частоты по сравнению с молекулой NO в газовой фазе. Следует отметить, что удлинение связи N—O в результате такого взаимодействия должно способствовать фрагментации.

С другой стороны, в случае взаимодействия молекулы NO с частицами, характеризующимися высоким сродством к электрону (например, с катионами), NO проявляет свойства донора электронов [16]. В этом случае частичный перенос заряда с разрыхляющей молекулярной орбитали NO на орбиталь катиона приводит к укорочению связи N—O и возрастанию соответствующей колебательной частоты по сравнению с молекулой NO в газовой фазе. Очевидно, что такой процесс затрудняет фрагментацию.

Ранее нами было показано [9], что эффективным способом установления положения адсорбции молекулы NO на кластерах серебра и меди является анализ формы соответствующих орбиталей кластера и молекулы NO. Мы предполагаем, что в процессе взаимодействия молекулы NO с нейтральным кластером Ag_8 происходит частичный перенос заряда с B3MO кластера на π -разрыхляющую орбиталь NO. Таким образом, взаимодействие происходит в основном между B3MO нетрального кластера и спин-занятой молекулярной орбиталью (C3MO) молекулы NO.

В случае взаимодействия с катионом перенос заряда осуществляется с π -разрыхляющей МО молекулы NO на C3MO катиона Ag⁺₈, обладающей той же формой, что и ВЗМО нейтрального кластера. Таким образом, анализ формы ВЗМО кластера Ag₈ может дать нам информацию о возможных направлениях адсорбции.

В случае взаимодействия молекулы NO с анионным кластером Ag_8^- частичный перенос заряда осуществляется с C3MO анионного кластера, обладающей той же формой, что и HCMO нейтрального кластера, на π -разрыхляющую орбиталь NO. Таким образом, предсказание возможных направлений адсорбции может базироваться на анализе формы HCMO кластера Ag_8 .

ВЗМО и НСМО кластера Ag₈ (структура I), а также спин-занятая молекулярная орбиталь молекулы NO показаны на рис. 2.

В случае нейтральных и катионных комплексов Ag₈—NO можно предложить два направления адсорбции: молекула NO может связываться с двумя различными атомами — положения над атомом — кластера Ag₈ (стрелки A и Б над B3MO на рис. 2). В случае анионного комплекса также существует два варианта: положение над атомом — молекула NO связывается с одним атомом серебра (стрелка Б над HCMO на рис. 2.); мостиковое положение — молекула NO располагается между двумя атомами серебра (стрелка А над HCMO на рис. 2).

Были проведены расчеты для всех описанных выше структур. Полученные структуры и соответствующие им ВЗМО показаны на рис. 3.

Из рис. 2 и 3 видно, что наши предположения относительно возможных направлений адсорбции молекулы NO подтвердились. Расчетные значения энергий адсорбции, длин связи N—O и соответствующих им колебательных частот приведены в табл. 1. Энергия адсорбции рассчитывалась согласно следующему уравнению:

$$E_{\mathrm{agc}} = (E_{\mathrm{Ag}_8} + E_{\mathrm{NO}}) - E_{\mathrm{Ag}_8 \mathrm{NO}},$$

где Е — полная энергия.

Рис. 3. Оптимизированные структуры комплексов NO—Ag₈ (структура I) и соответствующие им ВЗМО. I_A(0) и I_B(0) — нейтральные комплексы; I_A(-1) и I_B(-1) — анионы; I_A(+1) и I_B(+1) — катионы

Таблица 1

Рассчитанные с использованием функционала S2LYP свойства комплексов Ag₈ (структура I) с молекулой NO*

Свойства	Структура ІА			Структура ІБ		
	нейтральный	анион	катион	нейтральный	анион	катион
Энергия адсорбции, эВ	0,44	0,79	0,37	0,52	0,62	0,32
Длина связи N—O, Å	1,159	1,195	1,146	1,160	$1,\!199$	1,146
Колебательная частота N—O, см ⁻¹	1925,3	1709,4	1935,2	1912,8	1691,2	1947,5

* Рассчитанное S2LYP/D95V(d) значение длины связи для свободной молекулы NO составляет 1,151 Å.

Из данных табл. 1 видно, что значения энергии адсорбции увеличиваются в следующем ряду: E_{adc} (катион) $< E_{adc}$ (нейтральный) $< E_{adc}$ (анион). Аналогичная зависимость наблюдается для длины связи N—O: R_{N-O} (катион) $< R_{N-O}$ (нейтральный) $< R_{N-O}$ (анион). Эти результаты согласуются с данными наших предыдущих исследований взаимодействия молекулы NO с кластерами Ag₄ [9]. Рост значения длины связи сопровождается уменьшением соответствующей колебательной частоты: v_{N-O} (анион) $< v_{N-O}$ (нейтральный) $< v_{N-O}$ (катион), что также согласуется с предположениями, описанными в начале раздела. Таким образом, в случае структуры I в наибольшей степени способствовать фрагментации будет взаимодействие NO с анионным кластером серебра.

СТРУКТУРА II: НАИБОЛЕЕ СТАБИЛЬНЫЙ КЛАСТЕР, АДСОРБИРОВАННЫЙ НА ПОВЕРХНОСТИ ТіО₂

Структура II представляет собой наиболее стабильный кластер, адсорбированный на поверхности стехиометрического рутила TiO₂ (110) [10]. Изображенная слева на рис. 1 (II, Б) система является фрагментом расчетной периодической структуры Ag_8/TiO_2 . Очевидно, что в данном случае расположение молекулы NO сверху над поверхностью кластера Ag_8 представляет наибольший практический интерес. На рис. 4 приведены формы рассчитанных для структуры II ВЗМО и НСМО.

Рис. 4. Расчетные формы ВЗМО (слева) и НСМО (справа) кластера Ag₈ (структура II)

Рис. 5. Оптимизированные структуры комплексов NO—Ag₈ (структура II) и соответствующие им ВЗМО. II(0) — нейтральный комплекс; II(-1) — анион; II(+1) — катион

Как видно из рис. 4, B3MO характеризуется большой областью повышенной электронной плотности над поверхностью кластера, что обеспечивает выгодные условия для адсорбции молекулы NO над поверхностью кластера в случае с нейтральными и катионными комплексами. В случае анионной структуры, молекула NO может связываться с двумя атомами серебра одновременно (мостиковый тип адсорбции).

Нами были проведены расчеты трех структур с расположением молекулы NO над поверхностью кластера: нейтральный, анионный и катионный комплексы Ag₈—NO. Полученные структуры комплексов Ag₈—NO и соответствующие им B3MO показаны на рис. 5.

Следует отметить, что рассчитанные формы орбиталей отличаются от представленных на рис. 4. Анализ форм орбиталей комплексов (рис. 5) позволяет предположить, что ВЗМО и НСМО поменялись местами в результате взаимодействия кластера с молекулой NO. Для проверки этого предположения был проведен расчет энергии возбуждения электрона с МО 76 (ВЗМО) на МО 77 (НСМО) в рамках метода Time-Dependent DFT для обеих структур I и II (рис. 6). Расчеты

Рис. 6. Расчетные формы ВЗМО и НСМО структуры I (слева) и структуры II (справа) и соответствующие им энергии перехода ВЗМО→НСМО, рассчитанные методом TD-S2LYP/LANL2DZ

показали, что в случае структуры II ВЗМО и НСМО имеют довольно близкие энергии (0,24 эВ необходимо для соответствующего возбуждения), в то время как для структуры I аналогичная разница в энергии более чем в восемь раз больше (1,96 эВ). Этот факт объясняет наблюдаемую возможность замены ВЗМО на НСМО в случае структуры II.

Рассчитанные значения энергий адсорбции, длин связи N—O и соответствующих им колебательных частот приведены в табл. 2.

Таблица 2

	Структура II				
Своиства	нейтральный	анион	катион		
Энергия адсорбции, эВ	0,84	0,47	0,60		
Длина связи N—О, Å	1,217	1,183	1,178		
Колебательная частота N—O, см ⁻¹	1665,4	1667,8	1777,0		

Рассчитанные с использованием функционала S2LYP свойства комплексов Ag₈ (структура II) с молекулой NO

Из табл. 2 видно, что зависимость энергии адсорбции и длины связи N—O от заряда кластера отличается от таковой для структуры I. В данном случае наблюдается следующая зависимость: $E_{adc}($ нейтральный $) > E_{adc}($ катион $) > E_{adc}($ анион). Наиболее значительное увеличение длины связи N—O и наименышая соответствующая колебательная частота также соответствуют комплексу с нейтральным кластером серебра. Таким образом, в случае структуры II (в отличие от структуры I) процессу фрагментации будет в наибольшей мере способствовать взаимодействие NO с нейтральным кластером серебра. Следует также отметить, что взаимодействие молекулы NO даже с катионным кластером для структуры II приводит к удлинению связи N—O, т. е. способствует фрагментации.

ЗАКЛЮЧЕНИЕ

В рамках теории функционала плотности проведено квантово-химическое исследование адсорбции молекулы NO на нейтральных, анионных и катионных кластерах Ag₈ двух типов: самом устойчивом в газовой фазе (структура I) и наиболее устойчивом кластере на поверхности TiO₂ (структура II). Было показано, что в случае структуры I энергия адсорбции изменяется следующим образом: $E_{anc}($ катион) < $E_{anc}($ нейтральный) < $E_{anc}($ анион), что согласуется с результатами нашего предыдущего исследования для меньших кластеров серебра [9]. В случае структуры II наблюдается иная зависимость: Е_{алс}(анион) < < Е_{алс}(катион) < Е_{алс}(нейтральный). Данные по длинам связи N—O и соответствующим колебательным частотам также свидетельствуют о том, что для структуры II нейтральный кластер обеспечивает условия, наиболее способствующие дальнейшей фрагментации NO. Установлено, что в отличие от структуры I для структуры II, взаимодействие даже с катионным октамером серебра приводит к удлинению связи N—O, т. е. способствует фрагментации. Это важное заключение, если учесть результаты наших исследований распределения электронной плотности в системах Ag₈/TiO₂ [10]. Нами установлено [10], что в результате адсорбции на поверхности TiO_2 кластер серебра приобретает положительный заряд. Более того, собственное состояние, вклад в которое B3MO кластера серебра большой, расположено для систем Ag_8/TiO_2 выше уровня Ферми. Таким образом, облучение может способствовать переносу электронной плотности с B3MO Ag_8 на π -разрыхляющую орбиталь молекулы NO, что будет способствовать фрагментации.

ЛИТЕРАТУРА

1. Clotet A., Richart J. M., Illas F. et al. // J. Am. Chem. Soc. 2000. P. 7573-7578.

2. Dominguez-Ariza D., Sousa C., Harrison N.M. et al. // Surf. Sci. 2003. P. 185-197.

3. Sazama P., Capek L., Drobna H. et al. // J. Catal. 2005. Vol. 232. P. 302-317.

4. Breen J. P., Burch R., Hardacre C., Hill C. J. // J. Phys. Chem. B. 2005. Vol. 109. P. 4805-4807.

5. Brown W. A., King D. A. // J. Phys. Chem. B. 2000. Vol. 104. P. 2578-2595.

6. Meunier F. C., Breen J. P., Zuzaniuk V. et al. // J. Catal. 1999. Vol. 187. P. 493.

7. Zhou J., Xiao F., Wang W.-N., Fan K.-N. // J. Mol. Struct. (Theochem). 2007. Vol. 818. P. 51-55.

8. Grönbeck H., Hellman A., Gavrin A. // J. Phys. Chem. A. 2007. Vol. 111. P. 6062-6067.

9. Matulis Vitaly E., Ivashkevich O.A. // Comput. Mater. Sci. 2006. Vol. 35. P. 268-271.

10. Mazheika A. S., Matulis Vitaly E., Ivashkevich O. A. // J. Mol. Struct. (Theochem). 2010. Vol. 942. P. 47-54.

11. Handschuh H., Cha C.-Y., Bechthold P. S. et al.// J. Chem. Phys. 1995. Vol. 102. P. 6406-6422.

12. Matulis Vitaly E., Ivashkevich O. A., Gurin V. S. // J. Mol. Struct. (Theochem). 2003. Vol. 291. P. 664-665.

13. Hay P. J., Wadt W. R. // J. Chem. Phys. 1985. Vol. 82. P. 299-310.

14. Dunning T. H. Jr., Hay P. J. // Modern Theoretical Chemistry, Ed. H. F. Schaefer III. New York: Plenum, 1976. Vol. 3. P. 1–28.

15. Treesukol P., Limtrakul J., Truong T. N. // J. Phys. Chem. B. 2001. Vol. 105. P. 2421-2428.

16. Zhough M., Andrews L. // J. Phys. Chem. A. 2000. Vol. 104. P. 2618-2625.

УДК 546.667'185

А. Ф. СЕЛЕВИЧ, А. И. ЛЕСНИКОВИЧ

КРИСТАЛЛИЗАЦИЯ ФОСФАТОВ ТУЛИЯ В СИСТЕМЕ Тт₂O₃-P₂O₅-H₂O

В настоящей работе продолжены систематические исследования взаимодействия в системах M_2O_3 — P_2O_5 — H_2O (М — трехвалентный металл) с применением метода тонкого слоя (МТС) [1] в интервале температур, охватывающем поля кристаллизации фосфатов различной степени гидратированности и конденсации аниона: от кристаллогидратов кислых монофосфатов до полифосфатов и ультрафосфатов. К настоящему времени с применением МТС детально исследована кристаллизация фосфатов в системах для $M^{III} = Mn$, Fe, Ga, In, Cr, V, Yb,