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SUMMARY

The problem of optimality and performance evaluation for cluster analysis procedures is investigated. For
the situations where the classcs arc described by known or unknown prior probabilities and regular prob-
sbility density functions with unknown paramcters the asymptotic expansions of classification ermor prob-
ability are constructed. The results are illustrated for the case of well-known Fisher classification model.
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1. INTRODUCTION: MATHEMATICAL MODEL

The problem of performance evaluation and optimality analysis for statistical classification deci-
sion rules remains one of the most important problems in statistical cluster analysis theory and its
applications. This fact is caused not only by actual demands from practice but also by a special
dominant role of this problem detected by Glick:' *the task of estimating probabilities of correct
classification confronts the statistician simultaneously with difficult distribution theory, questions in-
terwining sample size and dimension, problems of bias, variance, robusiness and computation cost.
But coping with such conflicting concerns enhances understanding of many aspects of statistical
classification’.

Majority of results of performance evaluation and optimality analysis for statistical decision rules
are concerned with the situation, where the training sample used for decision rule construction 1s
classified and decision rules are being constructed by discriminant analysis methods. Review of
these results can be found in the monographs of Lachenbruch,” Raudys' and McLachlan.?

In applied classification problems with poor statistical data the training samples arc often un-
classified, and methods of cluster analysis (self-training classification) are used for classification
of training samples and also for classification of new-registered observations.

The main method of optimality analysis used up to now for these situations is Monte-Carlo
simulation. Some analytical results are discussed in monographs of Bock® and Kharin.® This paper
is devoted to optimality analysis for self-training statistical decision rules by asymptotic expansion
method.
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Define now the mathematical model. Let
O={glx;0)xeR" 0, eOCRT} (1}

be a parametric family of probability density functions in RY and L =2 different parameter values
{0, 0°} be fixed, The set {(,....07} determines L classes {(,....¢h }. The class £} is
described by the probability density function (p.d.f.) g 0®), ieS={I....L}.

Let a sample of n jointly independent random observations Xi.....Xy from the classes {£1, }.cs
be registered in R*. Introduce the notations: d® € § is an unknown random index of the class to
which the observation x, belongs:

Pld'=i}=n]. i€ (2}
where {70 hies (L os @ = 1) are prior class probabilities; D° =(dy..... d®)" is the vector of true

classification indices for the sample X =(x[...2x])", where T is the transposition symbol. The
parameters {{'}ies and the prior probabilities {n{};cs are vsually unknown. The cluster analysis
problem consists in construction of 2 decision rule (DR)

d=dix.X):RY = "™ —§ (3)

for classifying a random observation x € RY. The DR (3) allows to calculate the estimate D=
(el).....d,)" for the true classification vector of the sample X d, =d{x. X} 1=1.....n and also
1o classify the new-registered observations Xy, Xssez2...- € RN,

3 PLUG-IN' DECISION RULES AND QPTIMALITY MEASURES

Note that if all class characteristics {n®, (¢ }ics are a priori known, then the Bayesian DR (BDR)

d =dix; 7" )= arg rFEaga{n:‘qu:fi’}‘ 1} (4)
where 7* = (xf,....75 ). 0= (0" ... 1", classifies a random observation x from the class e
with the minimal value of classification error probability:
n=P{d £d}=1- f rnEaé-:{ﬂI’-?I[I:"f}} dx (5)
R\. Fz o

Now consider the situation. where {(®}cs (case 4) or {=], ('} ,es (case B) are unknown. Denote
by 0 and {#, {1} any statistical estimators for 7%, (¥ obtained by the sample X for cases 4 and B,
respectively. Instead of the BDR (4) let us use the *plug-in’ DR (PDR):

dix Xy=dx:z"0),  de(x,X)y=d(x; &, i (6)

which are derived from the BDR d(x; n°. () by substitution of statistical estimators for unknown
values of class characteristics.
As the optimality measures of PDR d(-). j € [4.B}, as in References 6 and 7. let us define:

(a} the classification error probability (CEP):
rimy=Pl{dix. X}y #£d}, je{4.BL {(7)

Copyright £ 1999 John Wiley & Sons, L. Appl Stochastic Models Data Anall 15, 6373 19945
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which means error probability at classifying a new-registered random observation x {x is indepen-
dent on the random sample X' ).
(b) the relative bias of the CEP:

Kiln) = Lr;}_i >0, je{Ad.B} (8)

1

where 1, >0 is defined in (5% the smaller x,(n} is. the more effective PDR d,(+) is (j € {4.B})
If for increasing sample size o

lim K{n)=0 (9)

A==

then the PDR ,(-..X) is asymptotically optimal;
(¢) the d-admissible sample size:

n; =n;(d)= min{n : kinysdl, je{4.B} {10)
where é= 0 is any predetermined value: if n=n7 (), then the inequality x;(n) =<8 holds (€ {4.B}).

Notc that the optimality measures (7)-(10) make possible to investigate symptotical optimality
of PDR (6) with respect to the sample size n by means of risk asymptotic expansion method,
which was proposed by Kharin."

1. OPTIMALITY OF *PLUG-IN" DECISION RULES BASED ON ML-ESTIMATES

Let in RY with prior probabilities 7. 5 =1 — n{ random observations from L =2 classes {},.11;
are being registered (note that the results of this section also can be generalized for L =2 classes).

- .,
The training sample X = (x[:...5x])" is a random sample of size n from the mixture of two
distributions:

gelx )y = nigle ) + (1 = =) gl %) (11}
Because X is a unclassified sample and we want to avoid non-unigueness, derived by denotations
of classes. we assume, that (8 = (f (here = is the symbol of lexicographic comparison). In this
model g-(-2 (") is an element of the family of mixtures:
Op = {gelr: o x e RY: 0= (0]:00) €O CR™ 0 - O} (12)
At first, let us investigate the case 4 (the prior probability nf of the class {2 is assumed o be
known). As an estimator { we use the maximum likelihood estimator {MLE):

i = ﬂTnglirﬂLE In gz l,n 1) (13)
B =1

Note that 1o solve the multiextremum problem (13) the different numerical methods may be
used (see. for example, References 8 and 9).

Assume that the family of p.d.fs (1) satisfics the following regularity conditions:

(C,) f, is an identifiable parameter of p.d.f gl 0L )

Eo {Inglx: 0,3y = Eo {nglx:th )} 0L # 0.,

Copyright €2 1999 John Wiley & Sons, Lud. Appl. Stochastic Models Deter Anal 18, 65 -75 (1999)
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where for any function f(x;th.)

Eo (f(x: 000} = f fx: 0. )qxi 0, ) dx
ﬂ'i-

(C2) For any compact K €6 and any points (.08 € K some neighbourhoods Up.Un CK
exist, such that for some a.c>1, b>2, any neighbourhood U/ C Uy and any th € Up, 0:€ U
the functions

lin glx; O )5, (Sup [In gx; }I)

irel

#In glx; m}l" Anglx; 0y dngle )|
gy, ) &y i,

S lnglx 0y) ‘ éIng(x; 0,) . inglx; ) i

ﬁﬂ,u{?ﬂh fﬂh ) ﬁ'ﬂ,; :'.’ﬂ;,,. FH*,

are uniformly integrable with respect 10 pd.f glx;0.), x€ RY (0.eK; kseS={L2} i jt=T1,m).
(C3) Ep{VieInglx:00)} = 0n. 7 €O,

where 0,, i1s m-vector, all elements of which are equal to 0;
(C4) Fisher information matrices

Hy=Eg{-Vingx o))}, k€S
J =J(P) = Ep{ Vi Inge(x:07)}

where
Ep{glx)} = j; gl )gne(x; 07) dx

are positively defined, so that the minimal eigenvalues of these mairices are separated from zero.
Let us construct asymptotic expansion of the CEP ry(n) at n — +oc. Denote by

= {x:G(x;")=0} CR" (14)
the Bayesian discriminant hypersurface, where
G(x: 0°) = (1 — 27 )q(x; 03) — nigix: 7) (15)
%= % f{?,,,G(x-.ﬂ"]]"',f"‘G’EFG{::!FH‘E?;GH;H“M" d#y-120 (16)
r

1(z)={1 if z=0;0, if z<0} is the unit function.
Theorem |

If the conditions (C))—-(Cs ) are satisfied, p.d.f:s {g(x; #] )} ey have derivatives w.rt x (x€ RV,
k€ 5), and surface integral (16) is finite: 2< + oc, then the CEP of PDR

dy(x, X)=1G(x; 0)) + 1

Copyright © 1999 John Wiley & Sons. Ltd. Appl. Stochustic Models Duta Anal, 15, 6575 (1999)
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allows the asymptolic cxpansion:
rdmy=r + ' + 007 Y) (17)

where

p=1—n —f WG 07 )G 7 ) d (18)
H"

Proof. Under the regularity conditions (Cy) (C4) using € hibisov'" stochastic expansion for the
random deviation A= — (" of MLE {13) we find, that Af) has the third-order moments, and
the following asymptotic expansions are true at t=1'yn —0:

for the hias:
E{A0} = 1a,001) (19
for the covariance matrix of i;
E{AKAN } =J 77 + LamomO(T) (20)
for third-order moments (K Ls€50 L 1= Lm):
E{W iy, — 0500, — )0, — )]} = 0tz (21)
where lay. o 1w are (2m)-vector and (2m x 2m)-matrix, all elements of which are equal 10 1.

Now expression (17) is obtained by applying of Taylor formula to the CEP (7):

rn)y=1-my— E{ N Gix; I?}}t?l,r;fr'}dr}

B

in the neighbourhood of (° with respect to Af), and of the relations (19)--(21). L

Corollary

Under the conditions of Theorem | the decision rule o 4(x, X') 15 asymptotically optimal: xy(n)—
0, if m— + 2.
Now let us consider the situation, where both the parameter values 0, and the prior probability

7% are unknown. In this case the composed veclor t;“={ﬂ',*' iﬂ‘z'liﬂ‘.‘ )7 of unknown parameters is

ToaTe . o
(2m + 1)-dimensional vector and its MLE 5 = (), 20, 1@ )" has the form

= arg max ilnqr[m:ﬂ] {22)

r.'_l
Wbyl

Theorem 2

If the conditions of Theorem 1 hold. then
rplmy=r +{z+ f+7m" + o7 (23}

Copyright © 1999 John Wiley & Sons. Lud. Appl. Stochastic Meodels Datar Anal. 13, B5-T5 (1999
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where
I
|

_— —— a : . _I )
- 2(1 — n?) I_UﬁLWH VGl ) T df oy =0

f

and 7 =0(r)=0.

Proof. 1s conducted analogously to the proof of Theorem 1. [

It i1s seen from Theorems | and 2 that
rgln)=ryn)+(ff + 7~ + O(n~H3)

where the term (f + v)n~" is derived by random errors of estimation of the prior probability =}
in the case #.
Note that the DR dg(x..X') also is the asymptotically optimal decision rule.

4, OPTIMALITY OF DECISION RULES BASED ON LIKELIHOOD FUNCTION

| Let us investigate the case of L=2 classes and define composite probability distribution of the

random sample X =(x7:...:x] )7 € R"Y and the random true classification vector D°=(d?,....d2)" €
5"

F
PO R P = [T mieglx,s Ly (24)
r=1
The logarithmic likelihood function, which corresponds to (24), has the form
Hm,0,0) =n~"In p(X. Dm0 =n""S" In (mq(x: 64)) (25)
=1
As in Section 3, let us consider the following two cases.
(A} Prior probability vector n°=(n},.... n; )" is known. In this case we need to estimate the
vectors D° and 0° = (0 :... B

i, 0.0) = e mages- ’ (26)

(B} All class characteristics n° and (7 are unknown, then we need to solve the following
problem:

N 0D} — max : (27)
vee’ Dest,
r:0= 8, -il.-ﬂ'|+ ey |

Denote by

it
W(m )= max K 0.D)=n""Y fix;m0) (28)

Copyright £ 1999 John Wiley & Sons, Lid. Appl. Srechasiic Models Dara Anad. 15, 65-75 (1999)
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the statistical estimator for the functional
Wir, )= Sxia, Mg x; 17 )dx {29)

E"-

where

fxa )= max In (gl ;)

Ge(: ) =3 alglx. 07)
i€k

The optimization problems (26) and (27) can be rewritten in the form of PDR:

di(x.X)= argmax{zfg(x:0)}, 0= argmax H(n°,0) (30)
dglx, X )= argnéasgc{ :T:Jq{.t;ﬁ;}}. {ﬁ.t}}= argm?*l om0 (31)

Note, that the PDR (30) and (31) are formal notations of the problems (26) and (27). Unlike
Section 3 the processes of unknown class characteristic estimation and classification of the sample
A" take place simuhaneously. But expressions (30) and (31) are more convenient for investigation
than expressions (26) and (27). ‘

_ As in Section 3, to avoid non-uniqueness assume that the components of the estimates 7, 0 and
() are lexicographically ordered and correspond to the true values =° and °, '

To investigate optimality of the procedures (26) and (27), let us construct the asymptotic ex-

pansions of the CEP for the PDR (30) and (31). Introduce the following notations:

Py = ﬂr‘f;t f‘ \/q{.:'.-',?,"}q{.r:ﬂ;?}d.r (32)

I JES

Fix)=mqle, @) = nigix. ), Ty={x Fix)=0}CRi#jc5)
Buyy = Ef’!fr'j;_ (Vi glx: )Y 10 Wirq(x: 6)| V. Fy()| ™! d#y
where [i;,(0°)- is the (k, 7Jth (m x m)-block of the matrix 7{0P) = ({0 )} 25
H=v='(8) | VoSG NV (x;2°,0)) g (x: 6°) dx b ='(8) (33)
V(0)y="V, W(=°.0)

For the case of two classes (L =2) and unknown =¥ let us introduce

. . :
=5 | (VPN 0 W Flan® I VF(an®)| ' dy (34)
Tz

Copyright © 1999 John Wiley & Sons, Lid Appl. Stochastic Models Dara Anal 18, 65-75 (1999)
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where
Fix:n®)y=(1 — o] )g(x: 05) — miglx; )
iory=7"0") j Ty S 20 W Vo SO 1 ) g3 °ydxP (")
R'I
Py = VW g, = (07 208 1))
Theorem 3

If under the regularity conditions (Cy)-(Cy) the following asymptotics takes place:
py =0, n— +x, (33)

then the estimators 0, #.0) from (30) and (31} are strongly consistent:

= ] L |
‘i_.!F. “._Hqu

g = e (36)

If in addition p.d.f. g(x;0.), 0, €8, is differentiable w.rt x € BV the matrices V(IF), F(n") are
non-singular and surface integrals in (32) and (34) are finite, then the CEP functionals ry(n).m(n)
of the PDR (30} and (31) have the form

| L i
FA{"}= ht i E} E[E”I} + B.“'“' - E-B.I',l.l'.r:'-“-l + 'I."-I} {HT}
;— —_

i =ry+ 30 +on) (L=2) (38)

where the CEP &, of the BDR (4) 15 determined in (8)

Proof. The strong consistency of . # and {} (expressions (36)) is proved by applying of the
strong law of large numbers to (28):

Wi ) 2=k W)

and the continuity theorems from Reference!! under asymptotics (35). The asymptotic expansions
{37) and (38) are constructed as in the proof of Theorem 1. LI

Corollary

The “plug-in" decision rules (30} and (31) are asymptotically optimal. If according to the con-
ditions of Theorem 3,

. glxs ) o ,
b= inf VeIl | 20 =0 I#J€S (39)
then
rilnmy=r, +oln ') ke {4.B} (40)

Copyright 49 1999 Jobn Wiley & Sons, Lid Appl Srochastic Models Dara Anul 15, 65-T5 (1999)
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Proof. The asymptotic optimality of the PDR {30) and (31) follows from (37), (38) and {9).
Under the conditions (C, )-Cy and (39) by means of Cauchy -Schwarz inequality we obtain

I‘th;{ |'El'.r-l'.l'|=H-"l'l'f~Bri-l'.l':' < P!.I"’-I= :~ / ?&-" eS

where py. pa< + % are some positive constants. From last inequalities and from the expressions
{15), (36) and (38) we have (40). =

MNote (sce Reference 6) that the asymptotics (35) is of practical value, because under ‘large
overlapping of classes” (when (35) is disturbed ) the value », is large and all DRs are not advisable
for applications.

5. FISHER MODEL AND ILLUSTRATION OF OBTAINED RESULTS

Let us illustrate the obtained results for the case with two equiprobable classes (L=2): n¥ =
3 = 0-5, when the family (1) is Gaussian:

gl y=ny(x|0°.5), ieS={1.2} (41)
where
melx . )= (21" Adet(E)) " expl —0-5(x — 0,)'E " \x = 0. )

15 N-variate Gaussian p.d.f. with mathematical mean vector ), and non-singular covariance
(N = N)-matrix ¥ (det(X)=>0). Relation (41} defines the so-called Fisher's model.
Denote by

A=\ Juy - onyre-ie - o)

the Mahalanobis interclass distance. The CEP &, of the BDR (4) has the form

cro(4)

where (-) 15 the standard Gaussian distribution function with the p.d.f.:
)= (2)=(2z)"" "exp{—="2). zeR

For the PDR based on the MLE (13) and (22) by the results of Section 3 we evaluated main
terms in the CEP asymptotic expansions (17) and (23) and determined the d-admissible sample
size {10

+ 1 (42)

i ] AT AY oo,
- } —_ — A - i S
H‘__]{l 1.|' |i2ﬂ (.Illl' + 3 T+ M ‘*Ir 3 [ )

. i 2 S
"ﬂl‘ii=ﬂ__|{r‘]+[ﬁ(i+§+ EIt )]—l-—l
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Table 1. Cluster analysis of Iris data

Case 4 Case 8
Sample size. » Evaluated A Fa “ Evaluated A Fig
10 713 0248 0-200 |-692 0-285 - 300
20 [913 193 (150 1-KE9 0-209 -200)
30 10 {186 0-167 1-872 0- 199 0- 200
40 1-R82 0-185 0-175 1-B82 0-192 0-175

where (=] means the entire part of the value z. Il n = nj(0), then for the CEP ry(n) the following
approximation is true:

rAm) = P £ =Fin)=(1 +d).  je{4.B}. (43}

In practice, this fact allows to estimatc the risk (7} when the classification process has finished
and when the Mahalanobis distance A has becn evaluated. As a numerical example let us usc the
well known Fisher'® Iris data. Four samples (1= 10: 20:30:40;: N = 4) from two (L=2) equiprob-
able classes (Iris versicolor, Iris virginica) were used. The experimental results for the case A
(prior class probabilities are assumed o be known: n? = ny =0.5) and for the case B ({a}cy are
assumed to be unknown) are presented in Table 1.

Herc -, is the experimental frequency of error decisions:

1.2 .
-Elt - {'}i'i.lﬂnl}
r-1 '

Note, in real situation. when the true classification vector D= (di..... d®)7 is unknown, as the
CEP estimates we recommend to use 7. j € {A.8}.

Now let us illusirate the results obtained in Section 4 for the PDR bascd on the likelihood
function. Suppese that the Mahalanobis distance A is increasing: A — + <., #— + 2. and
the asymptotics (35) takes place (because of p. = exp{—A7/%) under Fisher model (41)). All
conditions of Corollary of Theorem 3 are satisfied:

bia = \[( — YIS — ) = 0. v=00)
and according to (40) the CEP ry(n) and myin) of the PDR (30) and (31) have no terms of order
¢Xn~") in their asymptotic expansions:

Fm)=rq +oln" "), r1.='1‘(-—%) . jE{A.B}
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