ЛИТЕРАТУРА

1. Malashkevich G. E., Shevchenko G. P., Serezkina S. V., Pershukevich P. P. // The 13th Int. Workshoop on Sol—Gel Science and Technology, Los Angeles, 2005. P. 140.

2. *Малашкевич Г. Е., Шевченко Г. П., Сережкина С. В.* и др. // Физика твердого тела. 2007. Т. 49, № 10. С. 1804—1814.

3. Malashkevich G. E., Shevchenko G. P., Serezkina S. V., Denisenko G. A. // The 2^{nd} International Conference of Physics of Laser Crystals. Yalta, Crimea. 2005. P. IOT4.

4. Малашкевич Г. Е., Шевченко Г. П., Сережкина С. В. и др. // Изв. РАН. Сер. физ. 2006. Т. 20, № 11. С. 1662—1667.

5. Бокшиц Ю. В., Ващенко С. В., Ступак А. П., Шевченко Г. П. // Журн. физ. химии. 2009. Т. 83, № 3. С. 528—533.

6. Инфракрасные спектры неорганических стекол и кристаллов / Под ред. А. Г. Власова, В. А. Флоринской. Л.: Химия, 1972. 304 с.

7. Лидин Р.А., Молочко В.А., Андреева Л. Л. Химические свойства неорганических веществ. М.: Химия, 1971. 480 с.

УДК 541.136

Г. П. ШЕВЧЕНКО, Е. В. ТРЕТЬЯК, А. В. ПРУДНИКОВ, Л. С. ИВАШКЕВИЧ, М. В. КОРЖИК, В. А. МЕЧИНСКИЙ

КОЛЛОИДНО-ХИМИЧЕСКИЙ СИНТЕЗ АЛЮМОИТТРИЕВОГО ГРАНАТА, АКТИВИРОВАННОГО ЦЕРИЕМ, ДЛЯ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ КЕРАМИКИ

ВВЕДЕНИЕ

В настоящее время актуален вопрос создания энергосберегающих технологий производства оптических материалов широкого применения. Одним из наиболее перспективных направлений в этой области является создание оптически прозрачных керамик. В мире уже накоплен достаточный опыт по производству сцинтилляционных керамик из порошков микронной дисперсности [1-3], однако не вызывает сомнения тот факт, что использование нанотехнологий позволит существенно расширить ассортимент таких материалов за счет использования наноразмерных порошков и получить керамики, сочетающие в себе высокий выход сцинтилляций, быстродействие и высокую тормозную способность.

Имеется много публикаций, касающихся методов синтеза различных неорганических соединений в ультрадисперсном состоянии, обладающих рядом уникальных физических и химических свойств, не характерных для их массивных аналогов. В частности, проводятся детальные исследования соединений со структурой граната с общей формулой $\{A_3\}[B_2](C_3)O_{12}$, полученных разными способами [4—7]. Наиболее изученным из данного класса грантов является алюмоиттриевый гранат $Y_3Al_5O_{12}$, активированный ионами редкоземельных элементов, в частности церием (YAG/Ce), который используется в качестве люминофора для светоизлучающих диодов белого цвета свечения [8]. Недавно нами показана возможность получения прозрачной сцинтилляционной керамики на основе нанодисперсных порошков гранатов, синтезированных коллоидно-химическим способом [9]. Однако физико-химические параметры, определяющие эффективность YAG/Ce в качестве сцинтилляционного материала, изучены недостаточно. Кроме того, не выработаны требования к морфологии и размеру частиц YAG/Ce для получения прозрачной керамики.

В связи со сказанным цель настоящей работы заключалась в проведении исследований по влиянию условий синтеза на дисперсность, структуру и спектрально-люминесцентные свойства YAG/Ce.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы алюмоиттриевого граната $Y_3Al_5O_{12}$, активированного церием, получали с использованием коллоидно-химических подходов к их синтезу: соосаждением гидроксидов из водных растворов соответствующих солей.

Для совместного осаждения использовали 0,1 М растворы нитратов иттрия и алюминия, полученные растворением их оксидов в воде в присутствии HNO₃, растворы аммиака ($\rho = 0.983$) и гидрокарбоната аммония (0,1 М раствор). В качестве соли активатора использовали Ce(NO₃)₃ · 6H₂O, который добавляли к смеси растворов нитратов из расчета 5 ат. % Се по замещаемому иону Y³⁺. Все реактивы были марки «х. ч.».

Осаждение проводили следующим образом. Исходные растворы солей Y(NO₃)₃ и Al(NO₃)₃, взятых в стехиометрическом соотношении по оксидам (Y₂O₃ : Al₂O₃ = 3 : 5), сливали при перемешивании, добавляли навеску Се(NO₃)₃ · 6H₂O, и выдерживали в течение суток при постоянном перемешивании для гомогенного распределения компонентов в растворе (раствор А). Затем к свежеприготовленному раствору аммиака (образец 1) или гидрокарбоната аммония (образец 2) прикапывали раствор A со скоростью ~ 3 см³/мин (обратное осаждение) до рН конечного раствора 8,5—9,0. Полученные золи совместно осажденных гидроксидов оставляли на сутки для лучшего отделения осадков от раствора. После этого осадки выделяли центрифугированием, промывали 2 раза дистиллированной водой, спиртом и высушивали на воздухе при 60—80 °С в течение суток. Формирующиеся стеклообразные (образец 1) и порошкообразные (образец 2) ксерогели тщательно растирали в агатовой ступке и прогревали на воздухе в интервале температур 760—1000 °C, и в H_2 при 950-1000 °C. Кроме того, были получены образцы, представляющие собой монодисперсные сферические частицы SiO₂, с нанесенными на их поверхность частицами YAG/Ce.

Рентгенофазовый анализ полученных образцов проводили на дифрактометре ДРОН-2 с использованием CuK_{α} -излучения. Морфологию и размер частиц исследуемых образцов определяли методом электронной микроскопии на приборах LEO-1420 и ЭМВ-100ЛМ. ИК-спектры снимали методом диффузного отражения (с тонкого слоя порошка) на спектрометре Thermo Nicolet «Avatar FTIR-330» в области 400—4000 см⁻¹. Спектры люминесценции (СЛ) и спектры возбуждения люминесценции (СВЛ) регистрировались на спектрофлуориметре СДЛ-1, исправлялись с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения соответственно и представлялись в виде зависимости числа квантов на единичный интервал длин волн $dN/d\lambda$ от длины волны. СЛ и СВЛ записывались при температуре образцов 298 К.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенофазовый анализ (РФА). На рис. 1 представлены рентгенограммы образцов ксерогелей совместно осажденных гидроксидов (СОГ), отожженных при различных температурах на воздухе. Независимо от типа осадителя, используемого при их синтезе, образцы, прокаленные до 800 °С, являются рентгеноаморфными.

После прокаливания образцов, полученных осаждением аммиаком, при 860 °С в течение 2,5 ч на рентгенограмме регистрируется фаза граната $Y_3Al_5O_{12}$ кубической структуры [PDF 33—40], однако дифракционные пики уширены и малоинтенсивны. В результате прогрева при 900 °С интенсивность пиков увеличивается и они становятся более узкими. Рассчитанное значение элементарной ячейки YAG/Се при 900 °С составляет $12,02 \pm 0,30$ Å, а после дополнительного прогрева в H_2 (900 °С, 2,5 ч) — $12,014 \pm 0,130$ Å, что близко к этой величине для кубической структуры YAG [PDF 33—40]. Для образцов, полученных осаждением гидрокарбонатом аммония и отожженных при 900 °С (1 ч) регистрируется фаза YAlO₃ гексагональной структуры [PDF 16—219], который при 1000 °С (1 ч) превращается в $Y_3Al_5O_{12}$ кубической структуры с параметром элементарной ячейки, равным 12,06 ± 0,30 Å.

Электронно-микроскопическое исследование. Исходные золи соосажденных гидроксидов алюминия и иттрия состоят из агрегированных частиц размером 15—20 нм. Морфология и размеры формирующихся из них ксерогелей в зависимости от типа осадителя существенно различаются (рис. 2, *a*, *b*)

Ксерогели образца 1 состоят из плотных, хорошо очерченных конгломератов плотноупакованных округлых частиц размером 100 нм, размер конгломератов лежит в пределах 0,5—5 мкм (рис. 2, *a*). Ксерогели образца 2 слабо агрегированы и состоят из сферических частиц размером не более

 Рис. 1. Рентгенограммы порошков YAG/Се:a— образец 1 (время отжига 2,5 ч);
 δ — образец 2 (время отжига 1 ч)

КОЛЛОИДНО-ХИМИЧЕСКИЙ СИНТЕЗ АЛЮМОИТТРИЕВОГО ГРАНАТА, АКТИВИРОВАННОГО ЦЕРИЕМ, ДЛЯ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ КЕРАМИКИ

Рис. 2. Электронно-микроскопические снимки порошков YAG/Ce и их прекурсоров: *a* — образец 1; б — образец 1, термообработанный при 860 °C; *в* — образец 2; *г* — образец 2, термообработанный при 1000 °C

60 нм (рис. 2, в). Морфология и размер частиц, образующихся в процессе термообработки YAG, существенно не меняется (рис. 2, б, г). Для образцов 1 поверхность конгломератов становится более гладкой и их размер незначительно увеличивается. Для образцов 2 наблюдается более заметная агрегация частиц, образуются агрегаты небольших размеров (не более 2 мкм), характеризующиеся рыхлой структурой. Размер частиц, составляющих эти агрегаты, не увеличивается.

ИК-спектроскопическое исследование. На рис. 3 представлены ИК-спектры исходных и термообработанных образцов 1 и 2. Анализ этих спектров указывает на то, что исходные образцы ксерогелей (кривые a и d) независимо от типа осадителя характеризуются наличием широкой полосы поглощения в области частот 2800-3700 см⁻¹ и узкой полосы при 1629-1631 см⁻¹, отно-сящихся соответственно к валентным и деформационным колебаниям ОН-групп воды. Это свидетельствует о том, что на поверхности осаждаемых частиц формируются гидратные оболочки, которые образуют систему водородных связей при переходе золя в гель, за счет которых эти частицы удер-

Рис. 3. ИК-спектры исходных и термообработанных образцов: а, в, г, д — образец 2; б, е — образец 1

живаются во взвешенном состоянии и при высушивании ксерогеля формируют стеклообразные осадки. Это более характерно для образца 1.

Полосы поглощения в области 818—1510 см⁻¹ можно отнести к деформационным колебаниям связей N—H, N—O и C=O групп [10]. Наличие полос поглощения в области 428—520 см⁻¹ можно отнести к колебаниям связей Y—O—H, Al—O—H.

После прогрева этих образцов при 1000 °С (кривая *д*) интенсивность полос поглощения в областях 2800—3700 см⁻¹ и 1629—1631 см⁻¹ значительно уменьшается, а полосы поглощения в областях, указанных для связей N—H, N—O и С=О групп, исчезают. При этом появляются полосы поглощения в области 421—785 см⁻¹. Полосы при частотах 784—785 см⁻¹, 679—683 см⁻¹, 448 см⁻¹, согласно литературным данным, относятся к колебаниям связей Al—O, Y—O в структуре граната [6]. Полосы при 564—566 см⁻¹, 512—520 см⁻¹, 421—426 см⁻¹ можно отнести к колебанию связей Al—O—Y.

Отметим тот факт, что при температуре прогрева 900 °C образца 2 наблюдаемое положение максимумов поглощения в области 421-785 см⁻¹ отличается от положения максимумов в этом же образце, прогретом при 1000 °C. Это можно объяснить тем, что по данным РФА при 900 °C образуется не фаза граната $Y_3Al_5O_{12}$, а фаза YAlO₃.

Заметим, что точная интерпретация полос поглощения в ИК-спектрах затруднена, поскольку их максимумы могут изменяться от условий синтеза.

Спектрально-люминесцентные свойства. Для ионов Ce³⁺, как активаторов, характерны две линии возбуждения люминесценции при 340 нм и 460 нм в соединениях со структурой граната. В системе Y₂O₃—Al₂O₃, помимо граната, возможно формирование устойчивых моноклинной и перовскитовой фаз, для которых характерны различные спектрально-люминесцен-

КОЛЛОИДНО-ХИМИЧЕСКИЙ СИНТЕЗ АЛЮМОИТТРИЕВОГО ГРАНАТА, АКТИВИРОВАННОГО ЦЕРИЕМ, ДЛЯ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ КЕРАМИКИ

Рис. 4. Спектры возбуждения (длина волны регистрации 600 нм) (а) и испускания (б) люминесценции образца 1 (длина волны возбуждения 330 нм)

Рис. 5. Спектры возбуждения (длина волны регистрации 550 нм) (a) и испускания (б) люминесценции образца 2 (длина волны возбуждения 340 нм)

тные свойства. Для $Y_3Al_5O_{12}$: Ce³⁺ с кубическим типом элементарной ячейки межконфигурационной D \rightarrow F люминесценции ионов Ce³⁺ соответствует полоса с максимумом 530—560 нм, а перовскитовой фазе — 350—360 нм. Наличие обоих максимумов люминесценции, при смещении полосы возбуждения в коротковолновую область, свидетельствует об отклонении стехиометрического состава в соединении YAG/Ce, что и наблюдается для образца 1.

Рис. 6. Керамика, полученная из: *a* — образца 1; *б* — образца 2

Для образцов 1 и 2 изучена возможность получения керамики. С этой целью образцы YAG/Ce компактировались методом импульсного прессования до плотности 60 % от теоретической и сплавлялись при 1750 °C в вакууме. ЭМ-снимки полученной керамики представлены на рис. 6.

Размер кристаллитов, образующих керамику, существенно зависит от способа получения исходного прекурсора и составляет 5—7 мкм для образца 1 и 4—5 мкм для образца 2. На изломе наблюдается характерный структурный мотив граната. Также следует отметить практически полное отсутствие пор, что позволяет использовать образцы 1 и 2 для получения оптически прозрачной керамики на основе YAG/Ce. Однако для образца 2, для которого характерны меньшие размеры частиц, наблюдается более эффективное спекание.

Формирование частиц «ядро (SiO₂) — оболочка (YAG/Ce)» и их спектрально-люминесцентные свойства. Монодисперсные сферические частицы диоксида кремния с размером ~ 430 нм получали методом Штобера [11] (рис. 7, *a*). Полученные частицы SiO₂ помещали в золь карбонатного прекурсора YAG/Ce, обрабатывали ультразвуком в течение 15 мин, сушили 10 ч при 60 °C и прокаливали на воздухе в две стадии: при температуре 600 °C и 950 °C по 2 ч на каждой стадии. Прокаливание на первой стадии проводилось для удаления органических остатков, на второй — для формирования кристаллической фазы граната. Затем образцы прогревали в токе водорода при 1000 °C в течение 15 мин. Количество прекурсора брали из расчета содержания граната в конечном продукте 10 и 50 % по массе.

По данным электронной микроскопии (рис. 7), установлено, что размер формируемой оболочки граната составляет 15—25 нм независимо от количества YAG/Ce в образце (см. врезку 7, б). В случае 50 % весового содержания YAG/Ce в образце (рис. 7, б) он формируется не только на поверхности SiO₂-сфер, но и в объеме между ними.

По данным РФА, точный фазовый состав синтезируемых образцов установить трудно, так как дифракционные пики слабоинтенсивные и сильно

Puc.7. Электронно-микроскопические снимки: a — исходные частицы SiO₂, б — частицы «ядро (SiO₂) — оболочка (YAlO₃ + YAG):Ce³⁺» (50 вес. % граната)

уширены. Наиболее вероятно формируется фаза YAlO₃ [PDF 33—41] с примесью фазы Y₃Al₅O₁₂ или их твердый раствор [12]. Спектр возбуждения полученных частиц типа ядро—оболочка характеризуется несимметричной полосой возбуждения люминесценции с $\lambda_{max} = 325$ нм (рис. 8, *a*). Спектр испускания люминесценции (рис. 8, *б*) сформирован наложением полос люминесценции в гранатовой и перовскитовой фазах и имеет результирующий максимум при 420 нм. Это свидетельствует о значительном содержании фазы перовскита в полученном соединении. Работа по изучению условий формирования и свойств данных структур будет продолжена в дальнейшем.

ЗАКЛЮЧЕНИЕ

Представленные в данной работе результаты получения коллоидно-химическими методами высокодисперсных порошков алюмоиттриевого граната, активированного Ce³⁺ (YAG/Ce), показали возможность их применения для формирования высокоплотной керамики. Изучено влияние pH на полноту соосаждения гидроксидов иттрия и алюминия в качестве прекурсоров YAG/Ce, а также времени их старения, сушки и условий термообработки на дисперсность и агрегированность получаемых порошков YAG/Ce.

Установлено, что основными факторами, отвечающими за дисперсность образующихся порошков YAG/Ce, являются тип осадителя и время старения. Показано, что образец YAG/Ce, полученный при использовании аммиака в качестве осадителя, характеризуется наличием примесной фазы YAlO₃ и состоит из частиц размером ≤ 80 нм, собранных в агрегаты размером до 5 мкм. Для получения высокоплотной керамики из этого образца необходимо дополнительное диспергирование на планетарной мельнице в течение 15 ч. Образец YAG/Ce, полученный осаждением гидрокарбонатом аммония, состоит из частиц размером ≤ 60 нм, собранных в агрегаты размером ~ 2 мкм, и не требует диспергирования. Керамика на его основе характеризуется малым количеством пор и лучшей спекаемостью. Разработана методика синтеза порошков на основе частиц типа «ядро (SiO₂) — оболочка (YAG/Ce)», которые могут оказаться перспективными в качестве новых люминесцирующих материалов благодаря их меньшей стоимости.

ЛИТЕРАТУРА

1. Lukin E. S. // Refractories and Industrial Ceramics. 1997. Vol. 38, No 7–8. P. 253–259.

2. Lemeshev D. O., Lukin E. S., Makarov N. A. et al. // Glass and Ceramics. 2008. Vol. 65, № 3-4. P. 128-130.

3. Hua Gong et al. // J. Electroceram. 2008, doi:10.1007/s10832-008-9545-8.

4. Teiichi Kimura, Hirotsugu Takizawa, Kyota Uheda et al. // Journal of Materials Synthesis and Processing. 2001. Vol. 9. P. 57-61.

5. Xia G. et al. // Journal of Crystal Growth. 2005. Vol. 279. P. 357-362.

6. Lee H.-M. et al. // Mater. Res. Bull. 2008, doi:10.1016/j.materresbull.2008.10.006.

7. Purwanto A. et al. // Journal of Alloys and Compounds. 2008. Vol. 463. P. 350-357.

8. Nakamura S. et al. The blue laser diode: GaN laser light emitters. Berlin: Springer-Verlag. 1997. 330 p.

9. Korzhik M. V. et al. On the development of Heavy and Fast scintillation Nano-Ceramics. Conference Program of IEEE 2008 International Conference, 19-25 October 2008, Dresden Germany. P. 69-70.

10. Liao Y. at al. // Materials Letters. 2005. Vol. 59. P. 3724-3727.

11. Stober W., Fink A., Bohn E. // J. Colloid and Interface Sci. 1968. Vol. 26. P. 62-69.

12. Keiht M. L., Roy R. // Amer. Mineralogist. 1954. Vol. 39, № 1-2. P. 1-23.