УДК 621.357.7:535.33

Ю. Н. БЕКИШ, С. К. ПОЗНЯК, Л. С. ЦЫБУЛЬСКАЯ, Т. В. ГАЕВСКАЯ

КОРРОЗИОННОЕ ПОВЕДЕНИЕ ЭЛЕКТРОХИМИЧЕСКИ ОСАЖДЕННЫХ БОРСОДЕРЖАЩИХ ПОКРЫТИЙ НА ОСНОВЕ НИКЕЛЯ

Неуклонно растущий уровень производства и расширение областей применения защитных, функциональных металлических покрытий выдвигает все новые требования, предъявляемые к их физико-механическим свойствам. Это определяет возросший в последнее время интерес к электроосаждению легированных неметаллическим компонентом сплавов, диапазон свойств которых значительно шире и разнообразнее, чем у электроосажденных металлов. Среди данных покрытий весьма перспективными являются борсодержащие покрытия металлов подгруппы железа и их сплавов: никель-бор, кобальт-бор, железо-бор, никель-кобальт-бор, никель-железо-бор, которые характеризуются улучшенными физико-механическими, химическими и электрическими свойствами [1—6].

При использовании борсодержащих покрытий наряду с вышеперечисленными свойствами особое внимание уделяется их коррозионной устойчивости, которая зависит от ряда факторов, включающих химический и фазовый состав получаемых покрытий, их морфологию и структуру. Различные электрохимические методы, в том числе импедансная спектроскопия, в течение ряда лет успешно используются для изучения механизма коррозионных процессов, определения скорости коррозии и восприимчивости различных материалов к коррозионному разрушению в определенных условиях [7].

Цель данной работы — изучить особенности электрохимического поведения и устойчивость к коррозии в хлоридсодержащей среде покрытий никель-бор с различным содержанием бора.

МЕТОДИКА ЭКСПЕРИМЕНТА

Электрохимическое осаждение покрытий Ni и Ni—В проводили на медную подложку из раствора состава (моль/дм³): сульфат никеля — 0,85; хлорид никеля — 0,15; борная кислота — 0,5; сульфат натрия — 0,4 в гальваностатическом режиме ($i_k = 2 \text{ A/дм}^2$) при температуре 30 °C и pH раствора 4,5. В качестве борсодержащего соединения использовали декагидрокловодекаборат натрия (Na₂B₁₀H₁₀). Толщина покрытий составляла ~ 20 мкм. Количество бора в покрытии определяли методом потенциометрического титрования в присутствии маннита [8]. Структуру покрытий изучали рентгенодифракционным методом с помощью дифрактометра ДРОН-2.0 с использованием Co K_{α} излучения при ускоряющем напряжении 30 кВ и анодном токе 10 мА. Микрорельеф поверхности покрытий до и после коррозионных испытаний изучали с помощью сканирующего электронного микроскопа LEO-1420. Поляризационные измерения осуществляли с помощью потенциостата ПИ-50-1.1 в потенциодинамическом режиме при скорости развертки потенциала 0.5 мВ/с. В качестве вспомогательного электрода и электрода сравнения использовали платиновый и насышенный хлорсеребряный электрод соответственно. Рабочим электродом служили покрытия Ni и Ni-В с разным содержанием бора (рабочая площадь 1 см²). Все измерения проводили при температуре 20±1 °C и естественной аэрации (без перемешивания) в 3.5 % растворе NaCl. Оценка коррозионной стойкости исследуемых покрытий проводилась в процессе их иммерсионного тестирования в 3,5 % растворе NaCl. Для контроля состояния поверхности образцов в ходе тестирования использовали метод электрохимической импедансной спектроскопии. Импедансные измерения были выполнены с использованием потенциостата-гальваностата Gamry G 750 в диапазоне частот от $5\cdot 10^4$ до $3\cdot 10^{-3}$ Гц с шагом семь точек на каждый порядок (декаду). Все импедансные спектры получены при потенциале, соответствующем потенциалу разомкнутой цепи с амплитудой 10 мВ синусоидального возмушения. Перед записью спектров электродную систему выдерживали в течение 10-30 мин для установления стабильного (квазистационарного) значения потенциала.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для исследования были выбраны покрытия Ni и Ni—В с содержанием бора 4, 10, 20 и 26 ат. %. Выбор их был сделан на основании результатов рентгенографического исследования, согласно которому покрытия с содержанием бора 4 ат. % имеют поликристаллическую структуру и представляют собой твердый раствор бора в гранецентрированной кубической решетке никеля замещенно-внедренного типа; в покрытиях с содержанием бора 10 ат. % появляется рентгеноаморфная фаза; покрытия с содержанием бора 20 и 26 ат. % — рентгеноаморфные [9].

На рис. 1 представлены потенциодинамические поляризационные кривые, полученные для покрытий Ni и Ni—В с различным содержанием бора в среде 3.5 % NaCl. С ростом содержания бора в покрытиях практически не меняется скорость катодной реакции восстановления кислорода, протекающей в области потенциалов от -0,3 В до -0,8 В, а в более отрицательной области потенциалов наблюдается лишь незначительное увеличение перенапряжения выделения водорода. В отличие от катодной составляющей сопряженного электрохимического процесса, введение бора в покрытие оказывает заметное влияние на процесс его анодного окисления. Электроосажденные покрытия Ni и Ni-B поликристаллической структуры с относительно невысоким содержанием бора (~ 10 ат. %) характеризуются наличием области пассивности с малыми токами в диапазоне потенциалов от потенциала погружения до ~ 0 В. Анодный ток в области пассивности незначительно возрастает с ростом содержания бора в покрытии. Наиболее существенно вид анодной поляризационной кривой изменяется при переходе от поликристаллических к рентгеноаморфным покрытиям Ni—В при изменении содержания бора в них от 10 до 20 ат. % и выше. При этом область пассивности практически исчезает и наблюдается за-

Рис. 1. Потенциодинамические поляризационные кривые в 3,5 % растворе NaCl для покрытий Ni (1) и Ni—B (2—5) с содержанием бора: 2 — 4, 3 — 10, 4 — 20 и 5 — 26 ат. %

метный рост анодного тока в области потенциалов $-0,2 \div 0$ В (рис. 1). Анализ морфологии поверхности покрытия Ni—В (20 ат. % бора) после 7 ч. выдержки при потенциале -0,16 В показал, что происходит характерное растравливание поверхности с образованием мелких (сотни нанометров) и более крупных (около 1 мкм) ямок, т. е. в данных условиях происходит питтинговое коррозионное растворение покрытия. Полученные результаты поляризационных измерений свидетельствуют о том, что высокое содержание бора в покрытиях Ni—В приводит к заметному ухудшению коррозионной устойчивости этих материалов в хлоридных растворах.

Чтобы пролить свет на природу коррозионных процессов на поверхности покрытий Ni и Ni—В в нейтральной хлоридсодержащей среде, было проведено иммерсионное тестирование образцов в 3,5 % растворе NaCl с периодическим измерением спектров импеданса электродной системы. Типичные спектры импеданса покрытий после 24 и 168 ч выдержки их в растворе NaCl показаны на рис. 2. Импедансные диаграммы Найквиста (рис. 2, *a*) имеют форму слабо искаженного полукруга, что свидетельствует о том, что процесс растворения покрытия в основном контролируется переносом заряда. С увеличением времени выдержки покрытий Ni и Ni—В в растворе NaCl от 24 до 168 ч полукруг на диаграмме Найквиста значительно увеличивается в диаметре, причем в большей степени для поликристаллических покрытий, чем для рентгеноаморфных. В случае рентгеноаморфных Ni—В покрытий в области низких частот наблюдается диффузионное поведение Варбурга, что свидетельствует о контролировании коррозионного процесса не только стадией переноса заряда, но также и диффузией.

На диаграммах Боде (рис. 2, б) в большинстве случаев наблюдается один релаксационный процесс (или одна постоянная времени) в исследованном частотном диапазоне. Это является подтверждением того, что в процессе растворения покрытия лимитирующей стадией остается перенос заряда. Однако после 168 ч выдержки поликристаллического покрытия Ni—B с 10 ат. % бора в 3,5 % растворе NaCl в импедансных спектрах в области низких частот (0,1—1 Гц) появляется еще один релаксационный процесс. Он может быть связан с развитием коррозии в местах питтингов, появляющихся на поверхности покрытий во время коррозионных испытаний.

Рассчитанные параметры эквивалентной схемы для разных времен от начала погружения покрытия в 3,5 % раствор NaCl представлены на рис. 3 и 4, из которых видно, что поведение никелевых и поликристаллических Ni—В покрытий существенно отличается от поведения рентгеноаморфных покрытий. В первые минуты контакта с агрессивной средой сопротивление переноса заряда $R_{\rm пз}$ для поликристаллических покрытий лежит в диапазоне 50—100 кОм·см² (рис. 3, *a*, вставка). Величины $R_{\rm пз}$ быстро растут, особенно в первый час контакта и с увеличением времени погружения до 100 ч возрастают более чем на 2 порядка, достигая в ряде случаев максимальных значений (рис. 3, *a*). Самые высокие значения $R_{\rm пз}$ (7100 ÷ 7500 кОм·см²) при наиболее длительном контакте с агрессивной средой (~ 300 ч) имеют поликристаллические покрытия с 4 ат. % бора.

Для сравнения максимальные значения $R_{\rm п3}$ никелевого покрытия составляют 5800 + 6000 кОм-см² при меньшем времени контакта с агрессивной средой (~ 150 ч), после чего следует резкое уменьшение $R_{\rm n3}$. В случае покрытий с 10 ат. % бора максимальные значения $R_{\rm n3}$ не превышают 1500 кОм-см² после 100 ч контакта и затем медленно снижаются до 600 ÷ 800 кОм-см² (рис. 3, *a*). Величина емкости двойного слоя для покрытий Ni и Ni—В с 4 ат. % бора остается в довольно узком интервале (21 ÷ 26 мкФ/см²) и близка к величинам, обычно приписываемым емкости двойного слоя на металлах (рис. 4, *a*). Для покрытия Ni—В с 10 ат. % бора емкость двойного слоя первоначально практически не изменяется и составляет 21 ÷ 23 мкФ/см², после 168 ч выдержки покрытия в 3,5 % растворе NaCl емкость начинает расти и достигает предельного значения 31 ÷ 33 мкФ/см² по истечении 290 ч пребывания покрытия в хлоридном растворе (рис. 4, *a*).

Первоначальный резкий рост сопротивления переноса заряда для никелевых покрытий и поликристаллических покрытий Ni-B может быть связан с образованием и ростом пассивирующей пленки на их поверхности. Исследование методом сканирующей электронной микроскопии показало, что морфология поверхности покрытий Ni и поликристаллических Ni-B заметно не изменяется в процессе коррозионных испытаний, указывая на то, что образующаяся пассивирующая пленка достаточно тонкая (рис. 5, a-b). Вместе с тем, хотя вышеуказанные покрытия имеют плотную микро- либо нанокристаллическую структуру, коррозионно-активные частицы из раствора могут постепенно проникать к медной подложке в местах дефектов покрытий (по межкристаллитным границам и/или тончайшим порам) и инициировать коррозионный процесс, приводя к образованию коррозионных питтингов на поверхности. Как следствие, сопротивление переноса заряда электродной системы начинает падать после нескольких дней коррозионных испытаний. В действительности, на поверхности образцов Ni и Ni-B (10 ат. % бора) после коррозионных тестов были обнаружены коррозионные питтинги.

Рис. 3. Зависимость сопротивления переноса заряда от времени выдержки поликристаллических (a) и рентгеноаморфных (б) покрытий Ni (1) и Ni—B (2—5) в 3,5 % растворе NaCl:

содержание бора: 2 - 4, 3 - 10, 4 - 20, 5 - 26 ат. %. На вставке показана зависимость сопротивления переноса заряда от времени выдержки образцов в растворе в течение первых часов проведения эксперимента

Рис. 4. Зависимость емкости двойного слоя от времени выдержки поликристаллических (a) и рентгеноаморфных (б) покрытий Ni (1) и Ni—B (2—5) в 3,5 % растворе NaCl: содержание бора: 2 — 4, 3 — 10, 4 — 20, 5 — 26 ат. %

Иное поведение наблюдается в случае рентгеноаморфных покрытий. При погружении в раствор NaCl они демонстрируют заметно меньшие величины $R_{\rm n3}$ (15 + 25 кОм·см²) по сравнению с поликристаллическими покрытиями (рис. 3, δ). Более того, в первый час их контакта с агрессивной средой наблюдается снижение значений $R_{\rm n3}$ до 12 + 18 кОм·см² (рис. 3, δ , вставка), затем их резкий рост с достижением максимальных значений после 24 ч контакта с агрессивной средой, небольшое последующее снижение $R_{\rm n3}$ и дальнейший

КОРРОЗИОННОЕ ПОВЕДЕНИЕ ЭЛЕКТРОХИМИЧЕСКИ ОСАЖДЕННЫХ БОРСОДЕРЖАЩИХ ПОКРЫТИЙ НА ОСНОВЕ НИКЕЛЯ

Puc. 5. Электронные микрофотографии исходной поверхности (1) и поверхности после выдерживания в 3,5 % растворе NaCl в течение 3 недель (2) для покрытий Ni (a) и Ni—B с содержанием бора: *σ* – 4, *σ* – 20 ат. %

рост после 168 ч коррозионных испытаний (рис. 3, δ). Следует отметить, что максимальные величины $R_{\rm n3}$ для рентгеноаморфных покрытий Ni—В значительно ниже (находятся в диапазоне 100 ÷ 130 кОм см²) по сравнению с таковыми для покрытий Ni и Ni—В с низким содержанием бора. Характер изменения величины емкости двойного слоя $C_{\rm дc}$ для рентгеноаморфных покрытий Ni—В подобен характеру изменения $R_{\rm n3}$ (рис. 4, δ).

Некоторый рост $R_{\rm п3}$ после 1 ч испытаний для рентгеноаморфных покрытий может быть связан с формированием тонкой пленки продуктов коррозии на поверхности, которая не является в достаточной степени защитной, как в случае поликристаллических покрытий. Последующее снижение $R_{\rm n3}$, по-видимому, связано с появлением небольших локальных питтингов на корродирующей поверхности. Накопление продуктов коррозии на поверхности рентгеноаморфного Ni—В тормозит дальнейшее воздействие коррозионно-активных частиц электролита на металл, приводя к диффузионному лимитированию (импеданс Варбурга) и к дальнейшему снижению скорости коррозии. Методом сканирующей электронной микроскопии подтверждено присутствие пленки продуктов коррозии со специфической наноструктурой на рентгеноаморфных покрытиях, подвергнутых коррозионным испытаниям (рис. 5, e).

ЗАКЛЮЧЕНИЕ

Результаты импедансометрических исследований хорошо согласуются с данными поляризационных измерений в 3,5 % растворе NaCl и свидетельствуют о том, что коррозионная стойкость поликристаллических покрытий

Ni—В существенно выше, чем рентгеноаморфных. Обусловлена она, по-видимому, образованием плотной защитной пленки на поверхности поликристаллических покрытий, препятствующей проникновению активных ионов агрессивной среды и растворению покрытия. Максимальной коррозионной устойчивостью в хлоридсодержащей среде характеризуется покрытие Ni-B с относительно небольшим содержанием бора (4 ат. %), что может быть связано с резким уменьшением размера кристаллитов в покрытии по сравнению с чистым никелем. Достаточно высокая коррозионная устойчивость никелевых покрытий обеспечивается за счет быстрого образования целостной плотной защитной пленки на поверхностных дефектах кристаллической решетки, как центрах зародышеобразования для пассивирующих пленок [10]. При увеличении содержания бора до 10 ат. % в покрытиях Ni-В появляется рентгеноаморфная фаза и повышается коррозионная активность покрытия. По-видимому, в таких гетерогенных покрытиях коррозионные процессы могут ускоряться за счет образования локальных гальванопар между кристаллической и аморфной фазами. Кроме того, при увеличении содержания бора в покрытии Ni—В могут снижаться защитные свойства образующейся пассивирующей пленки за счет увеличения ее дефектности и разрыхления пленки. В максимальной степени это проявляется для рентгеноаморфных покрытий, для которых не наблюдается области пассивности на поляризационных кривых, а при длительных иммерсионных испытаниях на поверхности покрытий образуется сравнительно толстая неоднородная пленка продуктов коррозии, которая не выполняет функцию защитной пленки для предотвращения развития коррозионного процесса.

ЛИТЕРАТУРА

1. Gaevskaya T. V., Novotortseva I. G., Tsybulskaya L. S. // Metal Finish. 1996. Vol. 94, № 6. P. 100—103.

2. Гаевская Т. В., Цыбульская Л. С. // Изв. РАН. Материаловедение. 2001. Т. 6, № 5. С. 32—39.

3. Бекиш Ю. Н., Гаевская Т. В., Ивашкевич Л. С., Цыбульская Л. С. // Весці НАН Беларусі. Сер. хім. навук. 2007. №1. С. 36—40.

4. Ракович Е. В., Гаевская Т. В., Свиридов В. В. // Журн. прикл. химии. 2000. Т. 73, № 7. С. 1103—1108.

5. Цыбульская Л. С., Гаевская Т. В. // Свиридовские чтения: Сб. ст. Вып. 2. Минск, 2005. С. 77—82.

6. Новоторцева И. Г., Гаевская Т. В. // Журн. прикл. химии. 2000. Т. 73, № 5. С. 750—753.

7. Mansfeld F., Lorenz W. J. Electrochemical impedance spectroscopy — applications in corrosion science and technology // Techniques for Characterization of Electrodes and Electrochemical Processes / Varma R., Selman J. R. New York, 1991. P. 581—647.

8. Вальсюнене Я. И., Норкус П. К. // Тр. АН Лит. ССР. Сер. Б. 1972. Т. 1. Вып. 68. С. 93—96.

9. Цыбульская Л. С., Гаевская Т. В., Бекиш Ю. Н., Позняк С. К. // Химические проблемы создания новых материалов и технологий: Сб. ст. Вып. З. Минск, 2008. С. 90—103.

10. Wang L., Zhang J., Gao Y. et al. // Scripta Materialia. 2006. Vol. 55. P. 657-660.