СРАВНИТЕЛЬНАЯ ФАРМАКОЭКОНОМИЧЕСКАЯ ОЦЕНКА ЗАТРАТ НА ЛЕЧЕНИЕ ОСТРОГО ЛИМФОБЛАСТНОГО ЛЕЙКОЗА ПРИ ПРИМЕНЕНИИ L-АСПАРАГИНАЗЫ В ДОЗАХ 5000 И 10 000 ЕД

Шмаргун А.С.

В условиях трансформационной экономики система здравоохранения Республики Беларусь испытывает острую необходимость в фармакоэкономических исследованиях, позволяющих определять оптимальную тактику ведения больных и наиболее эффективно использовать бюджетные средства, выделяемые на нужды здравоохранения.

Цель исследования: провести сравнительную фармакоэкономическую оценку затрат на лечение острого лимфобластного лейкоза (ОЛЛ) у детей стандартной группы риска (SRG) по протоколу MB-2002, включающий различные ветви рандомизации — L-аспарагиназу 5000°Ед. и 10 000°Ед.

Задачи исследования. В зависимости от ветви рандомизации и этапа лечения:

- рассчитать стоимость прямых медицинских затрат;
- рассчитать коэффициент затратной эффективности.

Материалы и методы исследования. Основу исследования составили данные ретроспективного анализа 30 историй болезни детей с диагнозом ОЛЛ SRG, находившихся на лечении в ГУ «Республиканский научнопрактический центр детской онкологии и гематологии» (РНПЦДОГ) в период с 2002 по октябрь 2007 гг. и получавших лечение по протоколу МВ-2002. Основные этапы данного протокола — индукция ремиссии (ИР), курсы мультиагентной консолидации (К1, К2, К3), реиндукции (Р1, Р2, Р3) и поддерживающая терапия.

В соответствии с протоколом лечения, все больные были рандомизированы на две группы в зависимости от дозы введения нативной Coliаспарагиназы (L-ASP) $-5\,000$ или $10^{\circ}000$ Ед, которая вводилась на этапах консолидации.

Для каждой альтернативной схемы лечения был рассчитан коэффициент затратной эффективности, который представляет собой удельную стоимость в расчете на единицу эффекта:

$$Keff = \frac{Cost}{S} \div 100$$
,

где Cost – затраты на лечение; S – функция выживаемости.

Расчет стоимости лечения был проведен с учетом индексации в долларах США по курсу НБ на 15.10.2007 г.

Для анализа полученных результатов применен расчет средней и предельной ошибок.

Результаты и обсуждение. В результате проведенного исследования с вероятностью 95% установлено, что прямые медицинские затраты в первой группе составили $11\ 195,6\pm87,9\$$, во второй $-\ 11\ 622,4\pm918,6\$\%$ (табл. 1).

Для поиска возможных путей снижения издержек на лечение пациентов была рассчитана общая стоимость прямых медицинских затрат в зависимости от этапа химиотерапии дозы введения L-ASP (табл. 1).

Таблица 1

Стоимость прямых медицинских затрат в зависимости от этапа химиотерапии и дозы введения L-ASP

Этапы протокола МБ-2002		Разница				
	L-ASP 5000 Ед.		L-ASP 10 000 Ед.		т азница	
	абсолютная, \$	уд. вес,* %	абсолютная, \$	уд. вес,* %	абсолютная, **\$	%
ИР	2550,7	23,9	2208,5	20	-342,2	13,4
K_1	1494	14	2231	20,2	737	33
\mathbf{P}_1	835,9	7,9	303	2,7	-532,9	63,8
K_2	1226,7	11,5	1892,7	17,1	666	35,2
P_2	309	2,9	297,2	2,7	-11,8	3,8
К3	1317,2	12,4	2431,2	22	1114	45,8
P_3	349,1	3,3	248,8	2,2	-100,3	28,7
ПТ	2564,5	24,1	1451	13,1	-1113,5	43,4
Итого:	10647,1	100	11063,4	100	416,3	3,8

Удельный вес рассчитан исходя из общей стоимости прямых медицинских затрат.

В соответствии с представленными данными затраты на диагностику заболевания оказались незначительно выше (на 1,9%) у пациентов второй группы, возможно за счет необходимости в проведении повторных исследований.

У больных, в процессе лечения которых применялась L-ASP в дозе 10°000°Ед, отмечается более высокая стоимость терапии на всех этапах консолидации, с максимальным увеличением к последнему за счет расходов на химио- и сопутствующую терапию.

Сопоставление степени затратности этапов химиотерапии выявило более высокие издержки на проведение ИР, курсов реиндукции (Р1, Р2, Р3) и ПТ при использовании L-ASP в дозе 5000 Ед.

Анализ полученных результатов показал, что максимальная доля затрат на этапах консолидации пришлась на К3, а на этапах реиндукции – на Р1 (табл. 1). Дальнейшие исследования показали, что высокие издержки на этапе К3 доминируют по всем видам затрат (табл. 2).

^{**}При расчете абсолютной разницы за основу взята абсолютная стоимость L-ASP 10 000 Ед.

 Таблица 2

 Прямые медицинские затраты на этапах консолидации

Виды затрат	Этапы консолидации						
	K_1		K_2		К3		
	L-ASP	L-ASP	L-ASP	L-ASP	L-ASP	L-ASP	
	5000 Ед.	10 000 Ед.	5000 Ед.	10 000 Ед.	5000 Ед.	10 000 Ед.	
Химиотерапия	239,41	466,2	239,45	466,97	243,75	474,43	
Сопутствующая терапия:	400,32	731,19	375,66	801,71	425,14	1060,22	
противогрибковая	41,65	92,16	75,68	39,89	60,14	79,35	
антибактериальная	91,44	141,28	69,05	62,36	47,42	80,58	
противовирусная	0,7	1,05	0,57	8,82	1,79	61,2	
противорвотная	17,25	43,43	30,25	11,96	12,7	18,38	
др. лекарственные гр.	47,53	200,9	35,05	400,95	45,26	468,89	
трансфузионная терапия	201,75	252,37	165,06	277,73	257,83	351,82	
Инфузионная терапия	16,71	22,77	5,13	4,78	11,46	12,67	
Клинлаб. исследован.	492,17	745,68	451,78	443,85	410,74	624,98	
Расходные материалы	345,39	265,16	154,68	175,39	226,11	258,9	

Данные, представленные в таблице 3, свидетельствуют о том, что более высокие затраты на этапе P1 обусловлены расходами на клиниколабораторные исследования, сопутствующую (преимущественно антибактериальную и трансфузионную) терапию, и, соответственно, расходные материалы. Результаты исследования позволяют предположить, что на данном этапе лечения пациентов первой группы чаще развиваются инфекционные осложнения.

Таблица 3 Прямые медицинские затраты на этапах реиндукции

-		-					
Виды затрат	Этапы реиндукции						
	\mathbf{P}_1		P_2		P_3		
	L-ASP	L-ASP	L-ASP	L-ASP	L-ASP	L-ASP	
	5000 Ед.	10 000 Ед.	5000 Ед.	10 000 Ед.	5000 Ед.	10 000 Ед.	
Химиотерапия	13,5	12,97	12,84	13,18	12,79	13,43	
Сопутствующая терапия:	403,46	91,5	101,28	108,95	123,23	56,97	
противогрибковая	22,98	13,29	24,16	18,11	52,43	29,71	
антибактериальная	144,84	6,58	6,19	21,23	4,59	3,95	
противовирусная	1,62	13,46	1	3,79	9,06	2,11	
противорвотная	7,56	7,3	6,38	7,51	10,11	5,63	
др. лекарственные гр.	59,68	24,95	20,05	23,18	34,13	11,81	
трансфузионная терапия	166,78	25,92	43,5	35,13	12,91	3,76	
Инфузионная терапия	12,53	9,4	2,17	3,01	3,03	1,67	
Клинлаб. исследован.	244,19	118,88	134,87	115,18	157,55	139,39	
Расходные материалы	162,22	70,25	57,84	56,88	52,5	37,34	

Расчет коэффициента затратной эффективности (Keff) показал, что удельная стоимость в расчете на единицу эффекта при использовании в процессе лечения L-ASP в дозе 5000°Ед. составила 1,2, в то время как при применении этого же препарата в более высокой дозе — 1,3. Полученные данные представлены на рисунке 1.

Согласно представленным данным, величина тангенса угла, образованного отрезком, соединяющим точку, соответствующую терапии, при которой L-ASP вводилась в дозе 5000 Ед., с началом координат и осью функции выживаемости меньше.

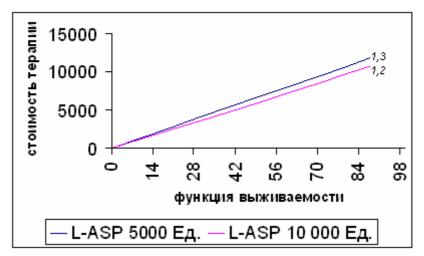


Рис. 1. Затраты-эффективность

Таким образом, чем меньше коэффициент затратной эффективности и чем меньше величина угла, образованного отрезком, соединяющим точку, соответствующую терапии на диаграмме с началом координат и осью функции выживаемости, тем меньшую стоимость надо заплатить за единицу эффекта. Т. е. при использовании L-ASP в дозе 5000 Ед. за единицу эффекта необходимо заплатить меньшую стоимость по сравнению с применением этого же препарата в дозе 10 000 Ед.

Таким образом, по результатам проведенных исследований можно сделать следующие выводы:

- 1. Прямые медицинские затраты больше при использовании L-ASP в дозе $10^{\circ}000~{\rm Eg}$.
- 2. Наибольшая доля затрат в обеих группах приходится на этап индукции, первый этап консолидации и поддерживающую терапию. Затраты на этапах консолидации выше при использовании L-ASP в дозе 10°000°Ед. Расходы на индукцию, все этапы реиндукции и поддерживающую терапию выше при применении L-ASP в дозе 5°000°Ед;
- 3. Коэффициент затратной эффективности наименьший при назначении L-ASP в дозе $5^{\circ}000^{\circ}$ Eд.

Таким образом, при сравнительной оценке затрат и эффективности терапии ОЛЛ по протоколу МВ-2002 установлено, что наиболее оптимальным и эффективным с экономической точки зрения является использование L-ASP в дозе 5°000°Ед.

ОСОБЕННОСТИ РАЗРАБОТКИ 3D МОДЕЛЕЙ ДЛЯ КОМПЬЮТЕРНЫХ ИГР

3. О. Щербов

Графика в компьютерной игре является одной из самых значимых и заметных частей продукта. Если ошибки игровой физики или поведение игровых объектов и персонажей обнаруживаются только на более поздних этапах прохождения игры, то плохая графика очевидна с самого начала. Создание графики в GameDev требует не только знаний 2D и 3D моделирования, учета ограниченности аппаратных ресурсов, но и неукоснительного выполнения всех этапов технологического процесса создания моделей, что и составляет предмет данной работы.

ОСНОВНЫЕ ЭТАПЫ РАЗРАБОТКИ 3D-МОДЕЛИ ДЛЯ GAMEDEV

Весь процесс создания графики компьютерной игры можно разделить на несколько этапов:

- 1. Создание скетча, чертежа, референса.
- 2. Моделирование.
- 3. Текстурирование.

Все эти этапы сильно отличаются друг от друга назначением структурой, подходами в реализации. Специалисты, которые одинаково хорошо могут создавать скетчи, моделировать или текстурировать, встречаются редко, ввиду обширности и разнородности необходимых знаний. Это предопределило разделение труда в сфере разработки компьютерной графики для GameDev.

1. Создание скетча

Скетч — это эскиз (набросок, не требующий высокой точности геометрических параметров), с которого делается 3D модель. Скетч создается в том случае, когда объект не существует в природе (например, монстр). В больших проектах над моделями работает не один человек, и возникает потребность в *централизованности воспроизведения моделей* (выполнение всех моделей в одном стиле). Основная задача при создании скетча — объяснить 3D-художнику характеристики объекта, который нужно смоделировать.

В ином случае используются чертежи, либо референс (фотографии). От качества скетчей, чертежей и референса сильно зависит конечный результат работы.