- 1. Израэль Ю. А., Волков А.С., Ковалев А.Ф. // Метеорология и гидрология. 1995. №5. C.5.
- 2. К и с е л е в В. Н. Белорусское Полесье: Экологические проблемы мелиоративного освоения. Мн., 1987.
- 3. Кудло К.К., Нестерук В.Н. // Геоэкологическое картирование Беларуси: состояние и перспективы: Тез. науч.-практ. конф. Мн., 1994.
- 4. Люцко А. М., Ромалевич И.В., Тернов В.И. Выжить после Чернобыля. Мн., 1990. 5. Лукашов В.К. Геологические аспекты охраны окружающей среды. Мн., 1987. 6. Мазуров Г.И., Нестерук В.Н. Метеорологические условия и полеты вертолетов. СПб., 1992.
 - 7. Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы. Л., 1984.
- 8. Несцярук В. М., Лыскавец М.У.// Весці БДПУ. 1995. №1. С.78. 9. Реймерс Н.Ф. Охрана природы и окружающей человека среды: словарный справочник. М.,

Поступила в редакцию 18,04,97.

УДК 626.87:581

Н.П.ИВАНОВ, И.Е.СКУРКО, Я.К.КУЛИКОВ, Л.В.ТАТЬЯНИНА, А.С.ЧУБАКОВ, В.Ю.МАЛАШЕНКОВ

ВЛИЯНИЕ ТОРФОВАНИЯ МЕЛИОРИРОВАННЫХ ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВ НА ИХ МИНЕРАЛОГИЧЕСКИЙ СОСТАВ

The investigation results on optimisation influence of Soddy-podzolic Soils on their mineralogical composition are considered.

Широкомасштабная мелиорация почв в Беларуси сама по себе является классическим примером вмешательства человека в крупные природные комплексы. При этом наблюдаются изменения как физических и агрохимических свойств, так и более глубоких биохимических процессов, происходящих в почве. Причем эти изменения не всегда позитивны. Авторами были проведены исследования, направленные на разработку способов оптимизации свойств дерново-подзолистых полугидроморфных почв после гидротехнической мелиорации и создание условий, предотвращающих вынос элементов питания за пределы почвенного профиля, что позволяет не только повысить плодородие самой почвы, но и защитить природную среду от загрязнения. Конечной целью исследований было получение высоких, качественных и устойчивых урожаев.

В настоящее время известны различные пути оптимизации почв, но, как правило, они способствуют улучшению отдельных их свойств, не решая проблемы в целом. Методом же торфования минеральных почв с определенными добавками навоза, известковых материалов и азотно-фосфорно-калийных удобрений можно оптимизировать все свойства почв: физические, механические, водные, воздушные, агрохимические, микробиологические, гранулометрический и гумусовый состав, а также микроклимат. Создается пахотный горизонт с такими параметрами: мощность Ап 30 ± 5 см, содержание физической глины (частиц < 0.01 мм) 25 \pm 5%, в том числе ила (< 0.001 мм) 12 \pm 2%, крупной пыли (0,05-0,001 мм) 35 ± 5%, песка мелкого (0,05-0,25 мм) 30 ± 5%, песка среднего и крупного около 10%. Содержание органического вещества в пахотном горизонте составляет 7 ± 2%, в том числе гумуса 6 ± 1%, полевая влагоемкость находится в пределах $40 \pm 5\%$, объемный вес (объемная масса) 0.9-1.0 т/м 3 , рН в КСІ 5,5–6,0, содержание подвижных доступных для растений К₂О 14–17 и $P_2O_5 - 17-20$ мг/100 г почвы. Из этих параметров необходимо выдерживать без существенных отклонений содержание физической глины, гумуса и агрохимических показателей (pH в КСІ, K_2O , P_2O_5).

Отметим, что высокий экономический эффект в данном случае достигается в условиях, когда в качестве мелиорантов при оптимизации используются местные материалы и агроруды. Срок же действия достигнутого эффекта определяется десятками лет. В дальнейшем необходимо проводить лишь обычные ежегодные агротехнические мероприятия, направленные на стабилизацию установившихся оптимальных свойств почв.

В данной статье мы рассмотрим влияние торфования дерново-подзолистых почв на их минералогический состав.

Полевые опыты проводились на базе ОПХ "Будагово" Смолевичского района Минской области в звене севооборота: картофель-ячмень-многолетние травы, что само по себе способствует ускоренному формированию оптимального органоминерального поглощающего почвенного комплекса. Оптимизация дерново-подзолистых почв осуществлялась путем внесения торфа (100–400 т/га).

Как показали проведенные исследования, оптимизация методом торфования мелиорированных дерново-подзолистых глееватых связносупесчаных почв существенно изменяет их гранулометрический состав. Так, содержание физической глины увеличивается с 18,6 до 25,9%, т.е. почва приобретает все свойства легкосуглинистой, наиболее благоприятной для условий Беларуси. При этом содержание ила увеличивается с 8,7 до 12,4—12,9% (табл. 1).

Таблица 1 Влияние оптимизации минеральной почвы методом торфования на ее гранулометрический состав

Вариант опыта	Содержание фракций, % к сухой почве									
	Песс	ж, мм		Пыль, мм	Ил	Физическая глина				
	средний (0,5–0,25)	мелкий (0,250,05)	крупная (0,05~0,01)	средняя (0,01–0,005)	мелкая (0,005–0,001)	(<0,001мм)	(<0,01мм)			
Контроль (фон) Фон + 300 т/га	17,0	28,5	31,9	4,0	9,9	8,7	18,6			
торфа Фон + 400 т/га	15,3	27,0	31,2	1,6	12,5	12,4	24,9			
торфа	16,6	26,1	29,4	2,0	13,0	12,9	25,9			

Данные по микростроению супесчаных почв показали, что илистый и пылеватый материал в них располагается на поверхности песчаных зерен в виде рыхлых и плотных покровов и пленок, имеющих в разных почвенных вариантах различный химический состав. Несомненно, илистые вещества связаны посредством агрегирующего воздействия полутораокисей (13—71%), органического вещества (13—25,5%), глинистых и других дисперсных минералов (5,8—59,7%) (табл.2).

Таблица 2 Влияние гумуса на агрегированность илистого вещества в оптимизированных минеральных почвах

Варианты опыта					Агрегиров	<u> </u>	.,			
	Общий ил, %	ИлА		органически	и веществом	голутораок	исями АІи Ге	Остаток ила		
		% к почве	% килу	% к почве	% к илу	% к почве	∵% килу	% к почве	% к илу	
Контроль (фон) Фон + 300 т/га	8,7	0,86	9,9	1,13	13,0	6,2	71,3	0,51	5,8	
торфа	12,4	0,25	2,0	2,74	22,1	2,11	17,0	7,30	58,9	
Фон + 400 т/га торфа	12,9	0,23	1,8	3,29	25,5	1,68	13,0	7,70	59,7	

В процессе окультуривания супесчаных почв методом торфования существенно изменяется структура илистого материала. Если в исходной супесчаной почве основная масса частичек размером менее 1 мкм агрегирована полутораокисями (71,3%), а количество воднопептизируемого и связанного органическим веществом ила составляет 9,9 и 13,0% соответственно, то в оптимизированных вариантах резко снижается доля полутораокисей (17—13%) как агрегирующего агента при четко выраженной тенденции роста значимости гумусоорганических (25,5%) и тонкодисперсных почвенных минералов (59,7%).

Таблица Влияние оптимизации минеральных почв методом торфования на минералогический состав различных категорий почвенного ила (% от фракции)

	Ил А				Ил Б				ИлВ			
Варианты опыта	См* + Вм**	Гс***	Хт****	Кт****	См+ Вм	Гс	Хт	Кт	См + Вм	Гс	Хт	Кт
Контроль (фон) Фон + 300 т/га	52	24	8	16	41	29	11	19	39	27	6	28
сухого торфа Фон + 400 т/га	28	55	3	14	23	52	4	21	13	67	5 .	15
сухого торфа	25	60	2	13	17	58	2	23	11	72	4	13

П р и м е ч а н и е : * — См — смектит, ** — Вм — вермикулит, *** — Гс — гидрослюды, **** — Кт — каолинит, ***** — Хт — хлорит.

Результаты рентген-дифрактометрических данных различных видов ила (табл.3) показывают, что в оптимизированных почвах наблюдается закономерное увеличение в иле всех категорий количества жестких блоков с межслоевыми промежутками слюдистого типа. При этом параллельно сокращается содержание пакетов с межслоями вермикулитового и хлоритового типов. Следует отметить, что глинистые минералы играют важную роль в формировании водопрочной макро- и микроструктуры [1]. Наиболее активными закрепителями органических веществ являются смектиты, деградированные слюды и хлориты. Такие минералы, как каолинит, кварц, полевой шпат, имеющие небольшие величины некомпенсированных зарядов и поверхностные слои которых не обладают способностью прочно удерживать органические коллоиды, в образовании водоустойчивых макро- и микроэлементов практически не участвуют. Слюды сами по себе представляют большую группу минералов сложного химического состава. Они являются источником калийного питания растений. Если в почве много крупнозернистых слюд, то они увеличивают ее водо- и воздухопроницаемость. Хлориты относят к водным силикатам алюминия, магния, железа, хлора. Поскольку глинистые и сопутствующие минералы имеют высокую степень дисперсности, их можно рассматривать как коллоиды, поверхностные слои которых обусловливают большинство функциональных свойств почв: поглотительную способность, гидрофильность, липкость и т.д. [2].

В оптимизированных минеральных почвах органические вещества гумусовой природы концентрируются в илистых фракциях; они оказывают существенное влияние на физические и химические свойства почв, от которых зависит продуктивность возделываемых сельскохозяйственных культур.

Необходимо подчеркнуть, что в исследуемых оптимизируемых почвах в агрегируемых и прочносвязанных фракциях ила в большом количестве содержатся минералы с высоким некомпенсированным зарядом в набухающих пакетах (смектиты) или с высокой степенью структурной неупорядоченности (слюды-гидрослюды), которые, взаимодействуя с органическим веществом (активный гумус), образуют глиногумусовые водопрочные микроагрегаты. Значительную роль играют и несиликатные полутораокиси железа и алюминия, участвуя в формировании глино-гидроокиси-гумусовых комплексов [3].

Таким образом, благодаря оптимизации минеральных почв методом торфования трансформируется минералогический состав различных категорий ила в процессе связывания органических и минеральных веществ в микроагрегаты, причем в окультуренных супесчаных почвах условия наиболее благоприятные для агрегированности приходятся на фракцию В ила (см.табл.3). Несмотря на устойчивость макроструктуры супесчаных почв при оптимизации наблюдается значительное увеличение количества водопрочных микроагрегатов, благоприятно влияющих на водно-физические свойства почв.

Следовательно, можно констатировать, что влияние оптимизации методом торфования на структурное состояние и улучшение водно-физических свойств перегнойных горизонтов дерново-подзолистых связносупесчаных глееватых почв заключается в увеличении количества водопрочных микроагрегатов — глино-гумусовых и глиногидроокиси — гумусовых комплексов. Основными факторами усиления агрегации ила в оптимизированных минеральных почвах наряду со свежим органическим веществом (активным гумусом) являются глинистые минералы с высокой степенью структурной деградированности (слюдыгидрослюды) и с высоким некомпенсированным зарядом в набухающих пакетах (смектиты, вермикулиты), а также полутораокиси железа и алюминия. В процессе окультуривания почв агрегирующая роль органических веществ и глинистых минералов возрастает, а полутораокисей — снижается.

^{1.} Горбунов Н.И. Минералогия и физическая химия почв. М., 1978. С.291.

^{2.} Иванов Н.П., Скурко И.Е., Куликов Я.К. и др. // Вестн. Белорус. ун-та. Сер.2. 1996. №2. С.52.

^{3.} Лукашев К.И. Геохимическое поведение элементов в гипергенном цикле миграций. Мн.,