экспериментальных исследований разработать новую технологию и рецептуру напитка, обладающего низким значением окислительно-восстановительного потенциала.

Автором проведен анализ источников литературы, содержащих информацию о современных направлениях развития ассортимента безалкогольных напитков, на основании чего сформирована база данных товароведных профилей безалкогольных напитков.

Изучен химический состав крапивы двудомной, а также продуктов ее переработки: сока и жмыха. Подтверждены антиоксидантные свойства растения, а также высокое содержание белковых (14%) и полифенольных веществ (до 1200 мг/100 г), витамина C (до 35 мг/100 г).

Установлено свойство крапивы образовывать сброженные экстракты с глубоким отрицательным значением окислительно-восстановительного потенциала (– 403 мВ).

Посредством многочисленных опытов по подбору температурного режима брожения и компонентного состава были разработаны оптимальные технология получения и рецептура напитка. Таким образом, были сформированы потребительские свойства напитка брожения на основе свежих листьев крапивы двудомной, обладающих глубоким отрицательным значением окислительновосстановительного потенциала (до – 460 мВ).

Проведена экспертиза качества напитка брожения экспертными методами, построен вкусоароматический профиль напитка. По оценкам экспертов, напиток обладает высокими органолептическими показателями. Практически все эксперты поставили наивысшие баллы, что свидетельствует о гармоничности напитка и его способности нравится потребителю.

Рентабельность производства напитка составила – 19,2%.

Конкурентные преимущества напитка очевидны: натуральность ингредиентов, функциональные свойства, что востребовано на современном рынке, а также невысокая стоимость, что обуславливает социальную и экономическую значимость разработки.

©ГГТУ им. П.О. Сухого

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОЭНЕРГИИ НА ПРЕДПРИЯТИЯХ МАШИНОСТРОЕНИЯ

А.В. ДРОБОВ, А.Г. УС

The problem of increasing energy efficiency have been solved

Ключевые слова: энергоэффективность

Результаты обследований позволяют сделать следующие выводы, что нормативные документы по энергосбережению не обеспечивают системного подхода при решении задач по повышению энерго-эффективности, организации имеют субъективный подход к выявлению резервов экономии ТЭР и разработки программ по энергосбережению. Очевидным является и то, что только при системном подходе к решению проблемы энергосбережения ТЭР можно достичь значительный результат с наи-большим экономическим эффектом.

С целью более полного, эффективного выявления энергосберегающих задач (мероприятий) на основании результатов обследования и анализа существующего положения дел по работе энергетических служб предприятий машиностроения, предлагается матричная декомпозиция системы потребления по осям расхода ТЭР и направлениям (резервам) экономии энергии. Проведенный путем декомпозиции системы, анализ энергетического хозяйства предприятий позволил выявить в полном объеме все мероприятия по энергосбережению (задачи) и классифицировать их на пять групп [1].

Для каждого агрегата или технологической линии, электропотребление которых фиксируется по счетчикам, удельные расходы на единицу продукции могут быть рассчитаны за каждые сутки (или технологическую операцию) и за год (месяц, квартал). Эти показатели имеют гауссово распределение, которое характеризуется средним значением и областью определенного разброса называемой областью технологически нормальной работы. С целью выявления значимых отклонений в удельном расходе электроэнергии для пользователей реализован программный статистический инструментарий. Для исследуемых цехов получены интервальные оценки среднего значения и среднего квадратического отклонения исследуемой величины с доверительной вероятностью p = 0.95 с помощью которых можно сравнить нормируемые параметры с полученными по фактическим данным. Данное сравнение позволит выявить на первом этапе значимые отклонения от нормы среднего потребления электроэнергии с учетом разброса значений, вызванного влиянием случайных факторов [2]. Применяем формулу (1).

$$\overline{x} - t_{(\alpha/2; \, n-1)} \cdot \frac{\widehat{\sigma}}{\sqrt{n-1}} \prec \widehat{M} \left[X \right] \prec \overline{x} + t_{(\alpha/2; \, n-1)} \cdot \frac{\widehat{\sigma}}{\sqrt{n-1}} \,, \tag{1}$$

где σ — стандартное отклонение; \bar{x} — значение признака у каждого объекта в группе; n-1 — число степеней свободы, равное числу объектов в группе без одного; $t_{(\alpha/2; n-1)}$ — определяем по таблицам распределения Стьюдента.

На втором этапе расчета выполняется статистическая проверка значимости различий между расходом по норме и средним фактическим. На третьем этапе расчета используется многофакторный анализ, заключающийся в изучении статистического влияния одного или нескольких факторов на результативный признак.

Литература

- 1. Дробов, А.В. О системном подходе при определении для субъектов хозяйствования мероприятий по энергосбережению / А. В. Дробов. // тез. докл. 9-й Международной научно-технической конференции (науч. чтения, посвященные П.О. Сухому). Гомель ГГТУ им. П. О. Сухого 2011. С. 147-148.
- 2. *Ус, А.Г.* Статистический инструментарий применяемый для обработки результатов потребляемых энергоресурсов / А.Г.Ус, А.В. Дробов, В.Н. Галушко // Научно-практический журнал «Вестник» ГГТУ им. П.О. Сухого. –2013. С. 72-79.

⊚кии

РАСЧЕТ ОГНЕСТОЙКОСТИ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОЙ СРЕДЫ ANSYS

А.С. ДРОБЫШ, А.Н. КАМЛЮК

The analysis of the components of the computing environment of ANSYS. Deter-mined by their ability to record the temperature and force effects that arise in the construction of a fire. Developed parametric models of reinforced concrete slabs, columns

Ключевые слова: железобетон, прочность, жесткость, пластичность, огнестойкость

Вопросы безопасности зданий привлекают все большее к себе внимание. Очевидно, что во многих случаях экономически оправдано увеличение первоначальных затрат на изготовление, и ее надежную огнезащиту, если это позволяет сократить количество чрезвычайных ситуаций в процессе эксплуатации. На сегодняшний день существует ряд способов оценки огнестойкости [1-3]. Ввиду высокой точности результатов и достоверности учета внешних факторов воздействия наиболее распространенным методом является опытная проверка огнестойкости готовых конструкций. Однако указанный метод трудоемкий и дорогостоящий, а в случае дополнительной оптимизации конструкций стоимость исследований возрастает многократно. Поэтому в качестве альтернативы широко используют методы аналитической оценки поперечно-деформированного состояния железобетонных конструкций. При этом в расчетных моделях используется большое количество поправочных коэффициентов, обоснование которых нередко требует не менее трудоемких экспериментов, чем испытание готового изделия [1-4].

В САЕ системе ANSYS построены модели основных элементов железобетонных конструкций – плиты, колонны. Эти модели позволяют проследить поведение железобетонных элементов, находящихся под воздействием стандартного пожара, а также оценить их огнестойкость. Задачу решали на базе платформы Ansys Workbench. Результаты моделирования сопоставлялись с имеющимися экспериментальными данными [1] с целью подтверждения применимости разработанных моделей при прогнозировании огнестойкости новых зданий и сооружений.

Представленные математические модели позволяют учесть запредельное поведение бетона (при напряжениях и деформациях выше критических) с учетом его пластичности и возможных сдвиговых деформаций, что наиболее полно описывает поведение материала при нагружении изгибом с учетом арматуры. В данном случае сопротивление железобетонных конструкций обусловлено наличием арматуры и ее взаимодействием с блоками бетона.

Литература

- 1. Милованов, А.Ф. Огнестойкость железобетонных конструкций / А.Ф. Милованов, М.: Стройиздат, 1998. 224с.: ил.
- 2. 2Учебно-методическое пособие в помощь специалистам проектных и монтажных организаций. Раздел I: Противопожарная защита высотных зданий и уникальных объектов. ООО ПКФ «Эндемик». Москва. 2004. 85 с.
- 3. *Левитский, Е.В.* Диаграммный метод решения статической задачи расчета огнестойкости железобетонных конструкций [Электронный ресурс]: Дис. канд. техн. наук: 05.23.01. М.: РГБ, 2007. (Из фондов Российской Государственной Библиотеки).
- 4. MacGregor, J.G. Reinforced Concrete Mechanics and Design // Prentice-Hall, Inc., Englewood Cliffs, NJ. 1992.