карбонильной группы в α -положении по отношению к карбоксильной, возможен отрыв атома водорода от метильной группы и образование CO_2 по схеме (4):

Таким образом, в настоящей работе установлено, что наличие в структуре карбоновой кислоты в α-положении по отношению к карбоксильной группе карбонильной или аминогруппы увеличивает вероятность протекания радиационно-индуцированного декарбоксилирования этих соединений в водных растворах по сравнению с незамещенными кислотами.

Литература

- 1. Lehninger A.L., Nelson D.L., Cox M.M. Principles of biochemistry (3rd ed.) / New York: Worth Publishing, 2000.
- 2. *Davies M.J.* The oxidative environment and protein damage // Biochim. Biophys. Acta. 2005. Vol. 1703. № 2. P. 93–109.
- 3. *Monig J., Chapman R., Asmus K.D.* Effect of the protonation state of amino group on the OH radical induced decarboxylation of amino acids in aqueous solution // J. Phys. Chem. 1985. Vol. 89. № 14. P. 3139–3144.
- 4. *Morris D.R.*, *Fillingame R.H.* Regulation of amino acid decarboxylation // Ann. Rev. Biochem. 1974. Vol. 43. P. 303–321.
- 5. *Пикаев А.К.* Современная радиационная химия. Радиолиз газов и жидкостей / Москва: Наука, 1986.

ИЗУЧЕНИЕ ВЛИЯНИЯ КАРНОЗИНА НА ФРАГМЕНТАЦИЮ ГЛИЦЕРО-1-ФОСФАТА, ИНДУЦИРОВАННУЮ РЕДОКС-СИСТЕМАМИ

Е. Н. Шендикова, И. Л. Юркова

ВВЕДЕНИЕ

Интерес к изучению превращений фосфоэфиров глицерина, и, в частности, глицеро-1-фосфата (ГФ), обусловлен тем, что они являются структурными фрагментами глицерофосфолипидов и при исследовании свободнорадикальных превращений последних могут быть использованы, в качестве модельных соединений. Кроме того, ГФ представляет со-

бой важный компонент клетки, участвующий не только в синтезе липидов, но и в некоторых метаболических процессах [1, 2].

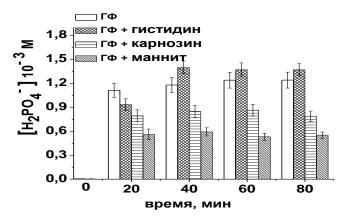
ГФ, как и глицерофосфолипиды, может подвергаться свободнорадикальной фрагментации (СРФ) с разрывом фосфоэфирной связи согласно схеме [1, 3]:

Процесс свободнорадикальной фрагментации биологически активных производных глицерина в биосистемах будет приводить к необратимому изменению их свойств и утрате выполняемых биохимических функций, и, следовательно, к нарушению работы клетки в целом. Это определяет необходимость изучения способов регуляции процесса свободнорадикальной фрагментации указанных соединений.

Дипептид карнозин (β -аланил-L-гистидин), который содержится в клетках мозга и скелетной мускулатуры в высоких концентрациях (1 – 20 мМ), обладает геропротекторными, иммуномодулирующими, противовоспалительными и антиоксидантными свойствами [4]. Влияние карнозина на свободнорадикальные процессы деструкции биологически активных производных глицерина с разрывом эфирных связей не изучены. Такие исследования необходимы для более глубокого понимания биологической роли и терапевтических свойств дипептида.

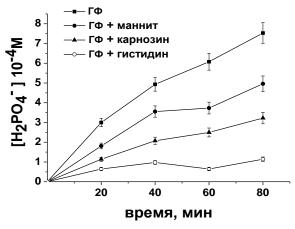
Целью данной работы явилось изучение влияния карнозина на свободнорадикальную фрагментацию глицеро-1-фосфата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


В работе в качестве объектов исследований использовали глицеро-1-фосфат, карнозин, гистидин, полученные от фирмы «Sigma-Aldrich» (Deisenhofen, Германия), а также маннит, KH_2PO_4 , гидропероксид, соли металлов (CuSO₄ x 5 H_2O или FeSO₄ x 7 H_2O) от 3AO «Вектон» (Россия).

Для инициирования свободнорадикальных процессов были выбраны редокс-системы Fe^{2+} (Cu^{2+})/ H_2O_2 /(аскорбат), генерирующие высокоактивные частицы HO^* [2]. Растворы, содержащие $\Gamma\Phi$, тестируемое вещество (карнозин, гистидин, маннит) и компоненты редокс-системы, термостатировали при температуре 37 °C в течение временного интервала 0-80 мин. Для анализа аликвоты растворов отбирали каждые 20 мин.

Свободнорадикальную фрагментацию ГФ оценивали по образованию фосфат-аниона колориметрическим методом. Анализ выполняли на спектрофотометре «Solar CM2203» по модифицированной методике, изложенной в работе [5].


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Введение карнозина в раствор $\Gamma\Phi$, инкубированный с системой ${\rm Fe}^{2+}/{\rm H}_2{\rm O}_2/{\rm ackop6at}$ при 37 °C, сопровождается снижением уровня фосфат-аниона в сравнении с контролем (Puc.1).

Puc.1. Влияние гистидина (10 мМ), карнозина (10 мМ), маннита (200 мМ) на дефосфорилирование глицеро-1-фосфата (90 мМ), индуцированное Fe2+/H2O2/аскорбат (0,5/10/5 мМ)

В условиях Cu^{2+} -опосредованного формирования радикалов НО карнозин также приводит к ингибированию фрагментации ГФ (Рис.2).

Puc.2. Влияние гистидина (10 мМ), карнозина (10 мМ), маннита (200 мМ) на дефосфорилирование глицеро-1-фосфата (100 мМ), индуцированное Cu2+/H2O2 (0,5/10 мМ)

Протекторное действие дипептида может быть обусловлено его способностью эффективно взаимодействовать с частицами НО (константа скорости $k_{vHO} = 4.0 \cdot 10^9 \ M^{-1} c^{-1}$) с образованием нерадикальных продуктов [6]. Важную роль радикалов НО в дефосфорилировании ГФ подтверждает снижение уровня фосфат-аниона (в 1,7-2 раза) в присутствии маннита ($k_{vHO} = 2.7 \cdot 10^9 \ M^{-1} c^{-1}$), эффективного акцептора указанных частиц [2].

С другой стороны, карнозин, как и другие гистидинсодержащие пептиды, хелатирует ионы переходных металлов и может снизить долю ионов Fe^{2+} и Cu^{2+} , участвующих в катализируемом разложении $\mathrm{H}_2\mathrm{O}_2$ с образованием радикалов HO^{\bullet} [2]. Согласно полученным данным, карнозин ингибирует фрагментацию $\mathrm{\Gamma\Phi}$, индуцированную системой Fe^{2+} , в меньшей степени, чем Cu^{2+} - опосредованный процесс. По-видимому, взаимодействие ионов Fe^{2+} с карнозином оказывает меньшее влияние на их способность катализировать образование частиц HO^{\bullet} . В данном случае протекторный эффект дипептида может быть обусловлен в большей степени его радикал-акцепторными свойствами. Это согласуется с данными работы [7], где было показано, что карнозин не является хорошим ингибитором Fe^{2+} -опосредованного пероксидного окисления липидов ($\mathrm{\PiOЛ}$).

Для понимания влияния структуры карнозина, состоящего из остатков аланина и гистидина, на его антиокисдантные свойства в работе исследовали влияние гистидина на фрагментацию ГФ. Аланин не является эффективным акцептором радикалов HO[•] (k_{vHO} = 4,0·10⁷ M⁻¹c⁻¹ [7]), не проявляет выраженных антиоксидантных свойств [6, 7]. В отличие от аланина гистидин эффективно взаимодействует с частицами HO^{\bullet} ($k_{vHO^{\bullet}}$ = $7,1\cdot10^9 \text{ M}^{-1}\text{c}^{-1}$ [7]). Согласно полученным результатам влияние гистидина на фрагментацию $\Gamma\Phi$, индуцированную $Fe^{2+}/H_2O_2/a$ скорбат, было ингибирующим только на начальном этапе исследованного временного интервала, далее оно становилось активирующим. Прооксидантное действие гистидина на дефосфорилирование ГФ в отличие от ингибирующего эффекта карнозина было выражено в большей степени при инициировании фрагментации системой Fe^{2+}/H_2O_2 . В работе [7] было показано, что гистидин также оказывал более слабое антиоксидантное действие на Fe²⁺-опосредованный процесс ПОЛ, чем карнозин, либо проявлял прооксидантные свойства. В то же время нами установлено, что гистидин значительно ингибирует дефосфорилирование ГФ, индуцированное системой Cu²⁺. Полученные результаты можно объяснить тем, что гистидин образует более прочный комплекс с Cu^{2+} , чем с Fe^{2+} , и тем самым уменьшает количество ионов Cu²⁺, вовлекаемых в каталитическое разложение Н₂О₂ с образованием радикалов НО^{*}. В отличие от гистидина карнозин проявляет ингибирующий эффект как на Cu^{2+} -, так и на Fe^{2+} - опосредованный процесс фрагментации $\Gamma\Phi$, что указывает на важную роль дипептидной связи в его молекуле.

Таким образом, в условиях Fe^{2+} -опосредованного генерирования HO^{\bullet} радикалов карнозин оказывает протекторное действие на деструкцию глицеро-1-фосфата с разрывом фосфоэфирной связи. Дипептид в большей степени проявляет ингибирующее влияние на Cu^{2+} -индуцированную фрагментацию $\Gamma\Phi$, чем на процесс, опосредованный ионами Fe^{2+} .

Литература

- 1. *Кисель М.А.*, *Шадыро О.И.*, *Юркова И.Л.* Радиационно-инициированная свободнорадикальная фрагментация биологически активных глицеридов // Химия высоких энергий.1997. Т. 31. С. 99–103.
- 2. *Halliwell B.*, *Gutteridge J.M.C.* Free radicals in biology and medicine. Oxford: University press, 2012.
- 3. *Юркова И.Л.* Свободнорадикальные реакции глицеро- и сфинголипидов // Успехи химии. 2012. Т. 81, № 2. С. 175-190.
- 4. *Болдырев А.А.* Карнозин: новые концепции для функций давно известной молекулы // Биохимия. 2012. Т. 77, № 4. С.403-418.
- 5. *Gin F.J.*, *Morales F.* Application of one step procedure of measurement of inorganic phosphate in the presence of proteins actomyosin ATPase system // Anal. Biochem. 1977. V. 77. №1. P.10-18.
- 6. *Chan W.K.M.*, *Decker E.A.*, *Lee J.B.*, *Butterfield D.A.* EPR spin-trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides // *J. Agric. Food Chem.* 1994. Vol. 42. P. 1407-1410.
- 7. Aruoma O.I., Laughton M.J., Halliwell B. Camosine, homocarnosine and anserine: could they act as antioxidants in vivo? // Biochem. J. 1989. Vol. 264. P. 863–869.

РАЗРАБОТКА МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ СПЕЦИАЛЬНОСТИ «ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ»

Д. В. Янковская, Е. И. Егина, Н. С. Верховец, М. Ю. Карнакова, Т. А. Савицкая, И. М. Кимленко

ВВЕДЕНИЕ

Начало проекта строительства АЭС включает создание национальной инфраструктуры, где особое внимание уделяется программе развития кадров. В соответствии с Государственной программой подготовки кадров для ядерной энергетики РБ на 2008-2020 г. химический факультет ведет подготовку специалистов в области радиационной и радиохимии.

Цель работы - разработка комплекса учебно-методических материалов по аналитическому контролю показателей водно-химического режима (BXP) АЭС и химическому разделу междисциплинарного билинг-