УСОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ТВЕРДОСПЛАВНЫХ ИЗДЕЛИЙ СЛОЖНОЙ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ

К.С. ЕВТУХОВ, Е.Е. ПЕТЮШИК

This article is devoted the problem of obtaining carbide products with complex geometric shapes. It describes the construction of a special deforming tool designed for pressing blanks with complex geometric forms and the results of research to improve the wear resistance of WC-Co tungsten carbide

Ключевые слова: твердый сплав, изостатическое прессование, деформирующий инструмент, допирование.

При изготовлении из порошков твердых сплавов тонкостенных заготовок сложной геометрической формы возникают проблемы неравноплотности, разрушения из-за наличия остаточных напряжений. В связи со сложностью обработки резанием твердых сплавов, обычно стремятся получить заготовку с минимальным припуском под дальнейшую механическую обработку.

В работе рассматривали возможность и условия формообразования заготовки детали «Проводка таза машин RI-10, RIR-15» (*рисунок* 1), являющейся специальным элементом для направления проволоки при ее волочении, изготавливаемой из твёрдого сплава ВК6.

Разработана конструкция формы [1] для изостатического прессования (*рисунок* 2) заготовки указанной детали. Оправка 1 изготовлена составной для свободного ее извлечения из прессовки; эластичная оболочка 2 также состоит из двух полуформ, фиксирующихся эластичным бандажом 3 по конической поверхности. Осевые деформации эластичных элементов прессформы ограничены крышками 4, 5.

Для снижения риска разрушения детали при эксплуатации из-за градиента температур на рабочей поверхности, целесообразно увеличение содержания кобальта в составе твердого сплава, что, однако, ведет к снижению твердости и износостойкости. В этой связи проведены исследования по повышению износостойкости твердого сплава ВК15 допированием нанодисперсными добавками. Показано, что введение SiC и ZrO_2 (1 – 1,5 %) уменьшает размер карбидного зерна твердого сплава на 15-20%, увеличивает на 3-5% микротвердость и параметр вязкости разрушения, повышает износостойкость твердого сплава на 20-30%.

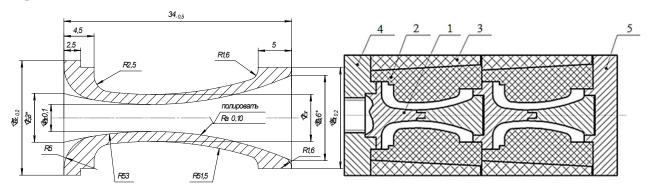


Рис. 1 – Эскиз детали «Проводка таза машин RI-10, RIR-15»

Puc. 2 – Схема конструкции деформирующего инструмента

Литература

- 1. *Евтухов К.С.* Деформирующий инструмент для радиального прессования тел сложной геометрической формы / Евтухов К.С., научный руководитель Петюшик Е.Е. // Матер. VIII Респ. научно-практ. конф. молодых учёных и студентов БНТУ «Инженерно-педагогическое образование в XXI веке» ч.1 Минск, 2012г. С 25-28.
- 2. *Побережный С.В.* Карбидо-вольфрамовый твердый сплав с микро- и нанокристаллическими добавками различной химической природы / Побережный С.В., Шелехина В.М., Евтухов К.С. // Матер. 10-й Междунар. научно-техн. конф. «Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка» Минск, 12-14 сентября 2012г. С 200-202.

©БРУ

ПРОГРАММНЫЙ КОМПЛЕКС ИМИТАЦИИ ПРОИЗВОДСТВЕННО-ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ SHAGOVITAPRO

И.А. ЕМЕЛЬЯНОВ, А.И. ЯКИМОВ, К.В. ЗАХАРЧЕНКОВ

The software package for industrial and economic activity simulation "ShagoVitaPro" is presented in this article

Ключевые слова: программный комплекс имитационного моделирования, производственно-экономическая деятельность предприятия