ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ИНТЕРМЕТАЛЛИЧЕСКИМИ ФАЗАМИ ПОД ДЕЙСТВИЕМ ИСКРОВЫХ РАЗРЯДОВ

Д.С. Герцрикен¹⁾, Г.В. Луценко²⁾, В.Ф. Мазанко¹⁾, Д.В. Миронов³⁾, О.И. Носовский¹⁾, В.О. Носовский¹⁾ Институт металлофизики им. Г.В. Курдюмова НАН Украины, (01680, Киев, бул. Вернадского, №36, (044)4440531, Украина, oinosov@i.ua. dina izotop@mail.ru, bob@t.kiev.ua); Черкасский национальный университет им. Б. Хмельницкого, (18017, Черкассы, бул. Шевченко, №81, Украина, (047)2471220, LucenkoGr@cdu.edu.ua, grisha@univer.cherkassy.ua
3) Самарская государственная сельскохозяйственная академия (446409, п. Усть-Кинельский Самарской обл., ул. Учебная, №2, Россия, denimironov@yandex.ru dvonorim@mail.ru)

Методами рентгеноструктурного и послойного радиометрического анализов, авторадиографии и вторичной ионной масс-спектроскопии изучались перераспределение легирующих атомов, фазовый состав многофазных покрытий, переходных слоев и основного металла после обработки искровыми разрядами, а также искровыми разрядами, сопровождающимися прохождением через образец постоянного тока. Исследована стабильность формирующихся интерметаллических покрытий при последующих изотермических отжигах и адгезия покрытия к подложке.

Введение

Известно, что при взаимодействии металлов с металлами в условиях пластической деформации со скоростями 1-200 с¹ или электроискровой обработки происходят ускоренные диффузия и фазообразование, причем интерметаллические фазы, как правило, не возникают [1]. Из-за высокой хрупкости интерметаллических фаз изучить их взаимодействие с металлом при ударном сжатии не представляется возможным. Поэтому для изучения проникновения атомов металла в заранее созданный интерметаллид, а атомов его компонентов в металл была только применена электроискровая обработка. Отметим, что помимо научного интереса данные исследования имеют и практическую ценность, так как делают возможным одностадийное получение износостойких, антиэмиссионных, других покрытий в виде слоев интерметаллидов, обладающих высокой адгезией к поверхности металлических изделий.

Основная часть

Эксперименты проводили методом ЭИЛ в аргоне на никеле и монокристаллическом молибдене с анодами из интерметаллических соединений Pt₃Zr и Ni₃Ti. Несмотря на все принятые меры: тщательно отмеренные навески шихты Pt и Zr в количествах, соответствующих стехиометрическому составу, двадцатикратную переплавку в вакуумной дуговой печи с переворачиванием слитка для предотвращения ликваций при охлаждении и гомогенизирующий отжиг при 1973 К в течение 36 ч в среде аргона, в слитке находилось несколько фаз (табл. 1, рис. 1). Помимо Pt₃Zr с гексагональной структурой типа Ni₃Ti (a = 0.5644 нм, c = 0.9225 нм) присутствовали некоторые количества твердого раствора циркония в платине α-Рt (ГЦК) и платины в цирконии α-Zr (ГПУ). В то же время при сплавлении никеля с титаном преимущественно возникал Ni₃Ti (a = 0,5101 нм, c = 0,8307 нм). Для снятия напряжений и термодесорбции аргона слитки отжигали при $0,7~T_{nn}$ в течение 14. Для выявления наличия инертного газа в материалах при выплавке и ЭИЛ контрольные образцы обрабатывались в аналогичных условиях, но с добавкой изотопа ⁸⁵ Kr.

Электроискровая обработка осуществлялась на установке «ЭФИ-Элитрон» с энергией импуль-

са 0,9 Дж и длительностью 50 мкс. Кроме того, в ряде случаев в процессе легирования через Мо пропускали ток (1-5 A), что способствует росту подвижности атомов [2].

Таблица 1. Фазовый состав анода.

аолица	т. Фа	30BPIN COC	зтав анода	1.		- 1	1100
d, нм	1, %	(hkl)			Фазы		
0,2828	20	110	018		Pt ₃ Zr	P 196	90,0
0,2334	100	004	111		Pt ₃ Zr	a-Pt	0,69
0,1998	80	113	200		Pt ₃ Zr	a-Pt	80,0
0,17615	40		321	110		8.12)	a-Zr
0,1406	40	220	220	. 0	Pt ₃ Zr	a-Pt	em,p
0,1335	40	008, 026	200 January		Pt ₃ Zr	15 138	10.0
0,1202	80	224	311	111-5	Pt ₃ Zr	α-Pt	90,0
0,1151	60		222			a-Pt	10,0
0,1000	20	226	400		Pt ₃ Zr	Pt	40,0
0,0916	60	POSCON!	331		1199	a-Pt	
0,0892	40	dramata	420		a Tril	a-Pt	nao
0,0870	20	039	a apau	055	Pt ₃ Zr		a-Zr
0,0842	20	408	no drivense		Pt ₃ Zr		oli de
0,0814	60	060	422	UL DE	Pt ₃ Zr	a-Pt	1500
0,0766	60	0012	511, 333		Pt ₃ Zr		
0,0742	20	4010		007	Pt ₃ Zr		a-Zr
0,0705	20	339	440		Pt ₃ Zr	a-Pt	
0,0675	40	531			Pt ₃ Zr	e 15	
0,0666	60	7717	600, 442			a-Pt	
0.0609	40	Jeg II	533	177	STILL.	a-Pt	
0,0601	20	448	622	110	Pt ₃ Zr	a-Pt	0300
0,0576	20	0016	444	4 1 13	Pt ₃ Zr	a-Pt	mll o
0,0559	20	334	711, 551	JA	18-13	a-Pt	MI
0,0555	20	200	640	-			
0,0541	40	808, 900			Pt ₃ Zr		er 200
0,0534	40	1000	642	D DITTO		a-Pt	

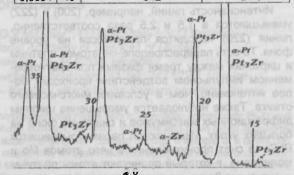


Рис. 1. Ренгенограмма анода (К_α -излучение Мо).

Распределение атомов в покрытии и основном металле изучали с помощью радиоактивных изо-

⁷⁻г международная конференция «Взаимодействие излучений с твердым те им», 26-28 сентября 2007 г., Минск, ве арусь 7-th Interna ional Conference «Interaction of Radiation with Solids», September 26-28, 2007. Minsk, Belarus

тодом рентгеноструктурного анализа.

После произведенного в наиболее щадящем режиме для исключения микроплавления непосредственного нанесения материала слитка на монокристаллический молибден, на нем возникло интерметаллическое покрытие с большей гомогенностью, чем у слитка - α-Zr исчезает полностью, а содержание α-Рt в покрытии резко снижается (табл. 2, рис. 2).

Таблица 2 фазовый состав покрытия на молиблене

d, HM	1, %	(hkl)		Фазы			
0,2794	20	110		100	Pt ₃ Zr	and the same	-
0,2402	20	112	THE PROPERTY.	San San San	Pt ₃ Zr	CATELLO INC.	CHOO
0,2292	80	004		MINISTER S	Pt ₃ Zr	STANISH PLAN	TOURS O
0,2229	100	C. S.	111	110	War and	a-Pt	Мо
0,2145	20	022	10.00		Pt ₃ Zr	and a	
0,1980	60	HUMBER	200	THE P		a-Pt	
0,1569	40	of ADDR	ASS AUL	200	To Follow	ALT THE	Мо
0,1404	60	220	220	out and the	Pt ₃ Zr	α-Pt	v. on
0,1308	20	026	St. March	DEA SEST	Pt ₃ Zr	200	numara.
0,1286	80			211	and and		Мо
0,1198	60	224	14.70	Make	Pt ₃ Zr	M. Salahan	namply.
0,1144	20	nr yene	222	Institu	Thupos	α-Pt	DROO
0,1113	40	Grale o	Sanica	220	TETEN	20 ph ps	Мо
0,0995	40	19	riligna p	310	QUI III	9-14-PD-	Мо
0,0908	40	194	in not	222	ARRIVA	001-64	Мо
0,0885	40	19.1	420	16	ELL	α-Pt	994,0
0,0843	80		lucion a	321	Walter Street	151,40,1	Мо
0,0808	20	060	100	2	Pt ₃ Zr	61.40.	051.0
0,0785	20	PIS		400	008,03	Oh d	Мо
0,0761	20	0012		0	Pt ₃ Zr	08 18	03120
0,0742	20		55	411		108-17	Мо
0,0704	20	440	11- 00	420	Pt ₃ Zr	05 10	Мо

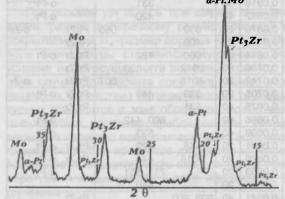


Рис. 2. Фазовый состав покрытия на молибдене

Интенсивность линий, например, (200) и (222) уменьшаются в 1,5 и 2,5 раза соответственно, линия (220) находится практически на уровне фона. То есть перераспределение атомов платины и циркония между тремя фазами при кратковременном импульсном воздействии проиходит более интенсивно, чем в условиях многочасового отжига. Также наблюдается уменьшение ширины дифракционных максимумов и снижение фона на больших углах. Изменяются параметры решеток Pt₃Zr за счет проникновения в него атомов Мо и молибдена, в который проникают атомы платины и циркония. Значения а и с уменьшаются до значений 0,5617 и 0,9171 нм соответственно, a_{Mo} возрастает на 0,0005 нм.

При прохождении постоянного тока покрытие из Pt₃Zr становится еще более однородным, ин-

топов и ВИМС, фазовый состав определяли ме- тенсивность линий (200) и (220) α-Рt уменьшается до 20 %, более слабые линии незначительно превышают фон. При этом усиливается проникновение атомов Мо в интерметаллид. Интересно, что увеличение толщины (массы) покрытия от тока является немонотонной функцией (рис. 3). При 3 А (и прочих равных условиях) толщина возрастает в 5 раз и становится равной 25 мкм.

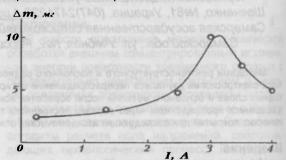


Рис. 3. Зависимость привеса образцов от величины тока.

При отжиге (Т=1873 К) молибдена со слоем Рі₃Zr (40 мкм), начиная от 1 ч отжига, происходит перераспределение атомов циркония и частичный распад в приповерхностном слое интерметаллической фазы, что сопровождается образованием и ростом твердого раствора циркония в платине. С увеличением длительности отжига t возрастает параметр решетки α-Рt до значений, соответствующих пересыщенному твердому раствору, и резко уменьшается количество интерметаллида (табл. 3). При t = 18 ч параметр решетки α -Pt уже не изменяется, но Pt₃Zr практически исчезает.

Таблица 3. Фазовый состав покрытия после отжига при

13 K B I E YE HINE	: 10 4.		Control Description of the
d/n, HM	1, %	(hkl)	Фаза
0,2257	100	0.611170	α-Pt
0,1953	80	200	α-Pt
0,1378	80	220	α-Pt
0,1209	100	311	α-Pt
0,1157	60	222	α-Pt
0,1000	40	400	α-Pt
0,0912	60	331	α-Pt
0,0890	60	420	α-Pt
0,0812	60	422	α-Pt
0,0805	40	336	Pt ₃ Zr
0,0764	60	333	α-Pt
0,0760	40	0012	Pt ₃ Zr
0,0701	20	440	α-Pt

Поскольку с ростом величины угла падения рентгеновских лучей увеличивается глубина их проникновения в вещество, то был проведен расчет толщины слоя, участвующего в образовании дифракционной картины. Это позволило выявить распределение значений параметра решетки твердого раствора Zr в Pt, а, следовательно, и концентрации Zr по глубине покрытия (рис. 4). Отметим, что распадается фаза, которая, согласно диаграмме состояния пары Pt-Zr, является термодинамически устойчивой.

Такой вид профиля, подтверждаемый данными ВИМС, можно, по-видимому, связать с протеканием следующих процессов: испарение циркония из приповерхностных слоев Pt₃Zr и небольшего количества α-Рt, содержащегося в покрытии после насыщения, глубиной до 5 мкм практически до уровня чистой платины; восходящая диффузия атомов циркония, приводящая к образованию пересыщенного раствора α -Pt на глубине 7-8 мкм, и снижение концентрации циркония в твердом растворе до равновесной на глубине 12-14 мкм. На глубине от 15 до 20 мкм по-прежнему преобладает интерметаллид Pt_3Zr , в котором растворены атомы молибдена, но также присутствует и равновесный раствор платины в молибдене. После удаления с поверхности слоя толщиной $h \sim 25$ мкм увеличивается доля твердого раствора. При дальнейшем снятии слоя до h > 30 мкм фазовый состав становится идентичным исходному молибдену.

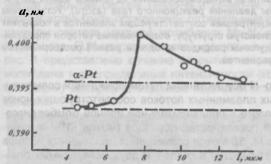


Рис. 4. Изменение параметра решетки α-Pt по толщине покрытия после при 1873 К в течение 18 ч.

Снижение $T_{\text{отж}}$ до 1673 К способствует меньшему перераспределению атомов Zr между твердым раствором Zr в Pt и интерметаллидом Pt₃Zr. При этом максимум концентрации смещается в сторону поверхности. При 1473 К распад интерметаллической фазы практически не наблюдается, испарение циркония из приповерхностных слоев также становится незначительным.

Благодаря взаимной диффузии атомов Pt и Мо при отжиге увеличивается адгезия покрытия к подложке по сравнению с нанесенным покрытием. Была разработана методика оценки степени сцепляемости Pt₃Zr с Mo. На боковые стенки образца наносили покрытие толщиной до 25 мкм и деформировали ударом. При ε~10 % отрыв пленки не наблюдался. После отжига при 1873 К для отрыва нужна была деформация на 20 %.

Те же результаты наблюдаются при покрытии никеля интерметаллидом Ni₃Ti. На рентгенограммах снятых с поверхности, фиксируются линии только интерметаллида, слабые следы твердого раствора Тi в Ni, бывшие в материале анода, исчезают после первых минут обработки. При нанесении слоев интерметаллида, меченых по никелю ²⁷Ni и титану ⁴⁴Ti, наблюдается проникновение изотопов из формирующегося покрытия в глубь основного металла. При этом в переходной зоне присутствуют как скопления атомов, т.е. Ni₃Ti., так и отдельные атомы (твердый раствор). Также есть миграция атомов основного металла в покрытие (и в никель) на значительную глубину (рис. 5). Это приводит к хорошей адгезии слоя Ni₃Ti к никелю.

Отжиг при 1473 К практически не влияет на фазовый состав покрытия, но протяженность переходной зоны увеличивается.

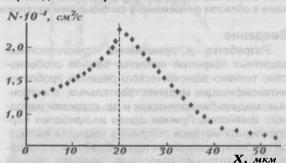


Рис. 5. Распределение ⁶³Ni, нанесенного перед ЭИЛ на никель, в основном металле и образующемся покрытии.

Заключение

Таким образом, электроискровая обработка позволяет получать на поверхности металлов покрытия, состоящие преимущественно из интерметаллического соединения и сохраняющие заданный фазовый состав при повышенных температурах.

Список литературы

1. Герцрикен Д.С., Мазанко В.Ф., Тышкевич В.М., Фальченко В.М. Массоперенос в металлах при низких температурах в условиях внешних воздействий. - Киев: РИО ИМФ, 1999. - 438 с.

2. Перетятку П.М., Михайлов В.В., Геририкен Д.С., Мазанко В.Ф. - ЭОМ. - 1995. - № 4. - С. 15 - 18.

INTERACTION OF METALS WITH INTERMETALLIC PHASES UNDER THE INFLUENCE OF THE SPARK DISCHARGES

D. S. Gertsriken¹⁾, G. V.Lutsenko²⁾, V.F.Mazanko¹⁾, D.V.Mironov³⁾, O.I.Nosovskiy¹⁾, V.O.Nosovskiy¹⁾

The Physics of Metal Institute of the National Academy of Sciences of Ukraine,
01680, Kiev-142, Vemadsky avenue, 36, tel. 4440531, Ukraine.

Cherkasy State University, 18017, Cherkasy, Shevchenko boulevard, 81, tel. 2471220, Ukraine.

Samarsky State Agricultural Academy, 446409, Ust – Kinelsky village by the Samara province, Russia.

The given paper is dedicated to learning of interaction of a molybdenum and nickel with intermetallic compounds Pt₃Zr and N₃Ti. Reallocation of alloying atoms, phase composition of multiphase coatings, transition stratums and main metal (supports) after processing the spark discharges, and also spark discharges accompanying with passing through a sample of a direct current studied by methods of the X-ray diffraction and level-by-level radiometric analyses, autoradiographies and secondary ionic mass spectroscopy. The features of localization of areas of a hard solution and intermetallic compound in a matrix are installed. The stability of formatived intermetallic coatings is researched at the subsequent isothermal annealing and adhesion of a coating to a substrate. The new measuring technique of an adhesion designed Is shown, that the electric spark loading allows to gain on a surface of metals of a coatings consisting mainly of intermetallic compound and saving given phase composition at heightened temperatures.