Секция 2. "Радиационные эффекты в твердом те е"

ВОЗМОЖНЫЕ ЭФФЕКТЫ ЗАХВАТА БЫСТРЫХ БОМБАРДИРУЮЩИХ ИОНОВ [®]Кr⁷⁺ С НАЧАЛЬНОЙ ЭНЕРГИЕЙ *Е*_{Kr}=394 МэВ и ПВА ОТ НИХ В РЕЖИМ АКСИАЛЬНОГО КАНАЛИРОВАНИЯ ПРИ ОБЛУЧЕНИИ МОНОКРИСТАЛЛИЧЕСКОГО GaAs

 Л.А. Власукова¹⁾, А.Ю. Дидык²⁾, А. Хофман^{2,3)}, В.Н. Ювченко¹⁾, Е.А. Грачева⁴⁾
Кафедра физической электроники, Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, e-mail: <u>vlasukova@bsu.bv</u>
Лаборатория ядерных реакций, Объединенный институт ядерных исследований, ул. Жолио-Кюри, 141980 Дубна, Россия, 6, e-mail: <u>didyk@jinr.ru</u>
Институт атомной энергии, 05-400, Отвоцк-Сверк, Польша, e-mail: hofman@jinr.ru
Институт химии новых материалов НАН Беларуси, Староборисовский тракт, 36, 220141, Минск, Беларусь

В работе представлены результаты исследования радиационных повреждений в кристаллах GaAs [100], облученных тяжелыми ионами ткг с энергией *Е_к*=394 МэВ до флюенса Ф*t*=5 10¹² ион/см². Распределение повреждений по глубине кристалла вдоль траекторий ионов выявлялось с помощью селективного химического травления поперечных сечений.

Введение

Для получения поперечных сечений кристаллы скалывались перпендикулярно поверхности, а затем обрабатывались в селективном травителе с последующим исследованием в растровом электронном микроскопе JSM-840. Как показало исследование протравленных сколов радиационные повреждения наблюдаются не только в приповерхностных областях, соответствующих высоким электронным потерям энергии ионов, но и в более глубоких слоях кристалла за проективным пробегом ионов. На рис. 1 и 2, в кристаллах GaAs представлена зона повреждений в области максимума ядерного торможения.

Основная часть

В этой области наблюдается узкая контрастная полоса (показана стрелкой на рис.1) при $R \approx R_{\rho} = 30,5$ мкм. За ней (более глубоко) зарегистрирован еще один слой непрерывный слой повреждений с шириной $\Delta R \approx 15$ мкм, то есть достигающий глубины $Z \approx 1,5 R_{\rho}$ (рис. 2).

Рис. 1 – Изображение в растровом электронном микроскопе поперечного скола GaAs, облученного ионами ^МКr⁷⁺ (394 MэB, 510 ⁺⁻ ион/см²) и обработанного в селективном травителе. Левая часть снимка представляет собой увеличенное изображение области, выделенной прямоугольником на правой части снимка. Стрелкой показана узкая полоса максимума дефектообразования в области пика Брэгга В таблице 1 представлены результаты расчетов с использованием компьютерной программы TRIM-98 проективного пробега ионов Кг с энергией $E_{\rm Kr}$ =394 МэВ, значения их неупругих потерь энергии $-(\partial E/\partial z)_{inel}$ и дозы повреждений вблизи поверхности $D(Z\approx0)=\sigma^d_{Kr}$ ($Z\approx0$)×(Φt) и в максимуме повреждений (подтравленной и проявившейся области) $D(Z\approx30,5)=\sigma^d_{Kr}$ ($Z\approx30,5$)×(Φt) при флюенсе (Φt)=5×10¹² иону/см².

Рис. 2 – Широкий поврежденный слой повреждений от Kr⁷⁺, расположенный под полосой максимума дефектообразования в области пика Брэгга

Ион	⁸⁴ Kr ⁷⁺
Энергия, МэВ	394
Рлюенс, ион/см ²	5×10 ¹²
-(∂Е/∂z) _{inel} , кэВ/нм	15,4
0(Z≈0), сна	1,78×10 ⁻⁴
D(Z≈30,5), сна	1,93×10 ⁻²

В таблице 2 представлены максимально переданные атомам Ga и As энергии, вычисленные по известной формуле:

$$A_{s} = \frac{4m_{Kr}M_{GalAs}}{\left(M_{Kr} + M_{GalAs}\right)^{2}}E_{K}.$$
 (1)

и соответствующие проективные пробеги.

E max

7-т международная конференция «Взаимодействие излучений с твердым телом», 26-28 сентября 2007 г., Минск, Беларусь 7-th International Conference «Interaction of Radiation with Solids», September 26-28, 2007, Minsk, Belarus Секция 2. "Радиационные эффекты в твердом теле"

Euon

Таблица 2

Тип иона	E, MoB	<i>R</i> _p , мкм
⁸⁴ Kr ⁷⁺	394	30,3±0,7
Ga	389,6	33,7 + 0,7
As	392.7	$32,3\pm0,6$

Как видно, расположение сильно растравленной узкой полосы на глубине Z=30,5 мкм, отмечающей конец пробега ионов криптона, очень хорошо совпадает с расчетным значением проективного пробега и глубины залегания максимума дефектообразования $\kappa_{\rm eff}^{\rm corr}$ =30,3±0,7мкм. Пробеги первично выбитых и тормозящихся в мишени GaAs атомов Ga и As значительно меньше, чем глубина залегания широкой полосы дефектов (рис.2). По нашим предположениям, эта широкая полоса по-

вреждений связана с треками от первично выбитых ионов Ga и As, которые попали в критические углы аксиального каналирования для ПВА Ga и As можно вычислить по формуле (см.[1, 2]):

$$m = \frac{2Z_1 Z_2 e_0^2}{(E_{mon} d)^{1/2}}$$
(2)

при
$$E_{uon} = \frac{2Z_1Z_2e_0^2d}{2}$$
 (3)

Считаем далее, что для GaAs параметры, входящие в (2) и (3) можно взять следующими: для гранецентрированной кубической решетки и направления [100] *d*≈0,5*a*₀=0,5×5,69=2,845 Å, а параметр *a* – радиус экранировки Томаса-Ферми, то есть минимальное расстояние, на которое каналированные ионы не могут подойти ближе к атомам решетки [2]:

$$=\frac{0,468}{\left[z_{1}^{2/3}+Z_{2}^{2/3}\right]^{1/2}}\text{ Å.}$$
 (4)

1) Для ионов Kr: $Z_2 = \frac{Z_{Ga} + Z_{As}}{2} = 32$, $a_{Kr}=0,1$ Å,

 $E_{uon} = E_{Kr}^{\max}$ =394 МэВ; 2) Для ПВА Ga: Z₁=Z_{Ga}=31, Z₂=32, a_{Ga}=0,105 Å, $E_{uon} = E_{Ga}^{\max}$ =389,6 МэВ;

3) Для ПВА As: Z1=ZAs=33, Z2=32, aAs=0,102 Å,

$$= E_{As}^{\max}$$
 =392,7 M₃B.

Тогда находим, $E_{non,Kr}^{mapor} > \frac{2Z_{K} Z_2 e_2^2 d}{a^4} = 9,44$ МэВ, а

соответствующие критические углы каналирования для ПВА Ga, As и ионов ⁸⁴Kr⁷ с максимальными переданными им энергиями имеют значения:

$$Ψ_{\kappa pum}^{\kappa r}(E_{\kappa r}^{\max}) = 0.31^{\circ} \text{ μ } Ψ_{\kappa pum}^{Carrow}(E_{GarAs}^{\max}) = 0.29^{\circ}.$$
 (5)

Отметим, что при облучении монокристаллов GaAs образцы специально не ориентировались по отношению к пучку ионов ⁸⁴Кг⁷. Тем не менее, при рассеянии ионов ⁻⁻Кг⁻ и соударениях, близких к лобовым, как видно из (5) возможно попадание ПВА Ga, As и ионов ⁸⁴Кг⁷ в режим каналирования при соблюдении условия:

$$E_{\mu\nu\mu}K_r < E_{Ga/As} < E_{Ga/As}^{max}$$
(6)

Выводы

1. Измеренные пробеги ионов "кг с энергией *E*кг=394 МзВ в монокристалле GaAs [100] находятся в согласии с проективным пробегом и положением максимума дефектообразования (сильно растравленная зона на рис.1), вычисленным с использованием компьютерной программы TRIM-98.

 Как видно из рис.2, структура сильно растравленной области состоит из двух областей, расположенных на расстоянии, примерно равном: ΔΖ≈3,08 мкм, при этом центральная часть как бы не растравлена совсем. Этот экспериментальный факт требует дальнейших исследований.

3. Видимые за сильно растравленными областями структуры (см. рис.1 и 2) и простирающиеся до глубин, примерно равных 45 мкм, по-видимому, обусловлены выбитыми при упругом рассеянии ионов "кг" атомов-ионов Ga и As или самими ионами ⁸⁴Kr⁷, вошедшими в режим аксиального каналирования (см. выражения (2)-(5)).

Список литературы

1. Калашников Н.П. Когерентные взаимодействия заряженных частиц в монокристаллах, М.: Атомиздат, 1981. 2. Кумахов М.А., Ширмер Г. Атомные столкновения в кристаллах, М.: Атомиздат, 1980.

POSSIBILITIES OF CAPTURE OF SWIFT BOMBARDING HEAVY ⁸⁶Kr IONS WITH ENERGY E_K=394 MeV AND FKA FROM ITS INTO AXIAL CHANNELING REGIME UNDER IRRADIATION GaAs SINGLE CRYSTAL

L.A. Vlasukova¹, A.Yu. Didyk², A. Hofman^{2 3}, V.N. Yuvchenko¹, E.A. Gracheva⁴ Joint Institute for Nuclear Research, Joliot-Curie, 6, 141980 Dubna, Russia, didyk@jinr.ru

The results of radiation damage study at GaAs [100] after irradiation by swift heavy 64 Kr⁷⁴ with energy E_{Kr} =394 MeV up to the fluence Φt =5·10¹² ion/cm². The distribution of damage along the projected ranges of ions in crystal was investigated using selective chemical etching of cross-sections.

7-1 международная конференция «Взаимодействие излучений с твердым телом» 26-28 сентября 2007 г., Минск, Беларусь 7-th International Conference «Interaction of Radiation with Solids», September 26-28. 2007, Minsk, Belarus