5. Carlin J. A., Ringel A., Fitzgerald E. A. et al. // Appl. Phys. Lett. 2000. Vol. 76. P. 1884.

6. Wan A., Menon V., Forest S. R. et al. // J. Vac. Sci. Technol. B. 2004. Vol. 22. P. 1893.

7. Lin S. W., Balocco C., Missous M. et al. // Phys. Rev. B.2005. Vol. 72. P. 165302.

8. Schulz S., Schnull S., Heyn Ch., and Hansen W. // Phys. Rev. B.2004. Vol. 69. P. 195317.

9. Schulz S., Schramm S., Heyn Ch., and Hansen W. // Phys. Rev. B. 2006. Vol. 74. P. 033311.

10. Kruszevski P., Dobaczewski L., Markevich V.P. et al. // Physica B. 2007. Vol. 401-402. P. 580.

ОСОБЕННОСТИ ЛАВИННОГО ПРОБОЯ ПЕРЕХОДА КОЛЛЕКТОР-БАЗА СУБМИКРОННОГО БИПОЛЯРНОГО ТРАНЗИСТОРА

В. А. Пилипенко, В. В. Понарядов, В. А. Горушко, В. С. Сякерский, Т. В. Петлицкая

Белорусский государственный университет

Основной тенденцией развития сверхболыших интегральных схем (СБИС) является увеличение степени их интеграции. Это достигается путем пропорционального масштабирования, когда имеет место уменьшение как топологических, так и вертикальных размеров биполярных микросхем, а именно: глубины базы, эмитгера, толщины диэлектрических, эпитаксиальных и токопроводящих слоев [1–3]. Изменение толщины эпитаксиальной пленки с 1,5 до 1,0 мкм позволяет за счет уменьщения бокового ухода в процессе травления и окисления кремния увеличить степень интеграции в 1,3 раза. При уменьщении толщины эпитаксиальной пленки до 0,6 мкм степень интеграции увеличивается в 2 раза с сохранением проектных норм проектирования.

Уменьщение вертикальных и горизонтальных размеров конструкции позволяет увеличить быстродействие транзистора за счет уменьщения величины ряда емкостей, снижающих скорость переключения. При этом необходимо рещать сложные задачи оптимизации профилей легирования и расчета требуемых концентраций носителей в эпитаксиальной пленке, базе, эмиттере и выбора необходимой щирины активной базы.

Основным путем вертикального масштабирования активных и пассивных элементов СБИС является значительное уменьщение диффузионных процессов в ионнолегированных слоях при формировании мелкозалегающих *p*-*n*-переходов, которое можно достичь используя в технологии создания СБИС быстрой термической обработки (БТО) [4-6].

Хорощо известно, что основными механизмами электрического пробоя p-n-переходов в n-p-n-транзисторе являются смыкание обедненных слоев в базовой области и лавинное умножение носителей в эпитаксиальной пленке, которые определяются уровнем легирования и толщиной соответствующих слоев. Так как при вертикальном масштабировании идет уменьшение глубин формируемых p-n-переходов, то возникают определенные требования к их формированию.

Поскольку при малой толщине эпитаксиальной пленки формирование базового *p*-*n*-перехода происходит в переходной области, эпитаксиальная пленка-подложка, т. е. концентрация носителей в пленке, не является постоянной величиной, то для расчета лавинного пробоя такого перехода необходимо учитывать концентрационный профиль распределения носителей как в базовой области, так и в эпитаксиальной пленке.

Однако до настоящего времени в большинстве работ, посвященных этой проблеме, не исследовались особенности влияния профилей распределения примесей на физические процессы, происходящие при лавинном пробое *p*-*n*-перехода, и основные параметры биполярного транзистора – такие как прямой коэффициент усиления по току β_n , пробивное напряжение коллектор-база $U_{\rm k,6}$, пробивное напряжение коллектор-эмиттер $U_{\rm k,3}$. Поскольку взаимосвязь коэффициента усиления по току в схеме с общим эмиттером β_n и коэффициента усиления по току в схеме с общей базой α_n определяется выражением [7]

$$\beta_n = \alpha_n (1 - \alpha_n) \tag{1}$$

а $U_{\kappa,5}$ и $U_{\kappa,5}$ в схеме с общим эмиттером связаны с α_n выражением

$$U_{\kappa,n} = U_{\kappa,0} [(1 - \alpha_n)^{-1}]^{1/4}, \qquad (2)$$

то взаимосвязь между $U_{\kappa,5}$, $U_{\kappa,6}$ и β_n будет иметь вид

$$U_{\kappa 3} = U_{\kappa 6} [(1 + \beta_n)^{-1}]^{1/4}.$$
 (3)

Численные значения β_n при заданном токе базы *n*-*p*-*n*-транзистора устанавливаются в зависимости от типа микросхемы (цифровая, аналоговая, цифроаналоговая), требований к конкретному блоку (входной каскад, выходной усилитель, источник опорного напряжения и т. д.), ограничений на величину потребляемой мощности и могут лежать в диапазоне от $\beta_n = 50$ до $\beta_n = 200$ при токах базы от десятков наноампер до десятков микроампер.

Целью работы являлось установление взаимосвязи $U_{\kappa 6}$, а следовательно и β_n , с профилями распределения примесей – бора (в базовой области транзистора) и фосфора (в эпитаксиальной пленке) n-p-n-транзистора.

Используя выражение (3), легко показать, что требуемая величина β_n , зависящая от типа проектируемой схемы, может достигаться при различных сочетаниях $U_{\kappa 6}$ и $U_{\kappa 3}$. Так, например, величина $\beta_n = 80$, являющаяся средним значением для логических схем, достигается при $U_{\kappa 6} = 9$ В и $U_{\kappa 3} = 3$ В или $U_{\kappa,6} = 12$ В и $U_{\kappa,9} = 4$ В.

Рассмотрим механизм влияния характера распределения примеси в базовой области *n*-*p*-*n*-транзистора на величину U_{к.6}.

Известно, что для определения лавинного пробоя *p*-*n*-перехода необходимо рещить одномерное уравнение Пуссона [7]

$$\partial E(x)/\partial x = e\varepsilon^{-1}\rho(x), \tag{4}$$

где $\rho(x)$ – электрический заряд в точке x; e – заряд электрона; ε – диэлектрическая проницаемость кремния.

Учитывая, что в связи с перемещением подвижных носителей к точкам приложения внешнего напряжения, в точке *х p*-*n*-перехода возникает нарушение нейтральности заряда, приводящее к образованию обедненной области, выражение (4) примет вид

$$\partial E(x)/\partial x = e\varepsilon^{-1}N(x), \tag{5}$$

где *N*(*x*) – распределение имплантированной примеси.

Для определения границ обедненной области при пробое (x_l, x_M) воспользуемся двумя условиями: равенством нулю напряженности поля и единице ионизационного интеграла на границах обедненной области (x_L, x_M) . В этом случае выражение (5) можно записать в виде

$$\partial^2 \varphi(x) / \partial x^2 = e \varepsilon^{-1} N(x). \tag{6}$$

Решая (4) с учетом вышеизложенных условий, получаем выражение для напряжения пробоя перехода коллектор-база

$$U_{\kappa,6} = e\varepsilon^{-1} \int x N(x) dx.$$
 (7)

Несмотря на простоту подинтегральной функции

$$\int Aexp[-B/E(x)]dx = 1,$$
(8)

где $A = 7.03 \cdot 10^3$ см⁻¹ [8]; $B = 1.231 \cdot 10^6$ см⁻¹ [8], она является плохо обусловленной изза резкого максимума в точке коллекторного *p*-*n*-перехода (x_k) и быстрого уменьшения при удалении от нее. Для ее вычисления раскладываем экспоненту в ряд Тейлора вблизи точки x_k и ограничиваемся его первыми членами:

$$exp[-B/|E(x)|] = exp(-B/E_{max})(1 + 1N(x_{v})(x - x_{v}))/(2E_{max})).$$
(9)

Решая совместно (9) и (8), получаем выражение для определения E_{max} .

$$Aexp(-B/E_{max}) = (E_{max})^{-1} \{ [B \mid N(x_{\kappa}) \mid]/(2\pi) \}^{1/2}.$$
 (10)

где $N(x_k)$ – производная распределения имплантированной примеси в точке x_k .

После решения (10) и определения E_{max} находятся границы обедненной области x_l, x_M таким образом, чтобы выполнялось условие

$$\int_{x} N(x)dx = | N(x)dx = E_n$$
(11)

Теперь, используя выражение (7), легко определить численное значение напряжения лавинного пробоя для заданной вели-

жения лавинного проооя для заданнои величины β_n . Для использования предложенного подхода необходимо знать распределение примеси в обедненной области базового *p*-*n*-перехода и положение ее границ при пробое. Решение данной задачи приведено в работе [9].

Уравнение (4), при условии равенства нулю напряженности поля на границах обедненной области (x_L, x_M) и равенства единице ионизационного интеграла с одновременным интегрированием коэффициентов диффузии и учетом распределения примесей в базовой области, границе раздела эпитаксиальная пленка-подложка и скрытом n'-слое, решалось численным методом на ПВМ. Результаты расчетов, в сравнении с

11

экспериментальными данными, полученными из измеренных вольт-амперных характеристик транзистора, приведены на рис. 1–3.

Как видно из рис. 1, напряжение пробоя однозначно определяется напряженностью электрического поля E_{max} в точке x_{κ} *p*-*n*-перехода. Из выражения (10) следует, что с увеличением градиента концентрации растет и напряженность электрического поля, а следовательно, как следует из рис. 1, падает пробивное напряжение $U_{\kappa 6}$. Глубина залегания *p*-*n*-перехода в точке *x*. слабо меняется от количества БТО и дозы легирования внедренной примеси, поскольку слабо меняются *N*, E_{max} . В то же время глубина залегания *p*-*n*-перехода в точке *x*_к сильно зависит от толщины эпитаксиаль-

эпитакспальной пленки 1 мкм и энергии легирования 70 коВ

Рис. 3. Зависимость пробивного напряжения коллектор-бъза от толщины эпитаксиальной планки при лозе легирования базы бором 10 мкКл/см² и энергии 70 кэВ (*э*) и энергии легирования базы для различных толщин эпитаксиальной пленки (б): l - h = 1 мкм; 2 - h = 0.8 мкм; 3 - h = 0.6 мкм

ной пленки и энергии легирования базы, что приводит к заметному изменению $U_{\kappa\delta}$ (рис. 3).

Таким образом, показано, что на пробивное напряжение коллектор-база определяющее влияние оказывает не только уровень легирования, но и профиль распределения бора по толщине базовой области *p*–*n*-переход и фосфора по толщине эпитаксиальной пленки. Эти особенности необходимо учитывать при проектировании конструкций базовых элементов биполярных субмикронных БИС.

ЛИТЕРАТУРА

1. Адамов Ю. Ф. Конструктивные элементы сверхбыстродействующих биполярных БИС // Зарубежная электронная техника. 1984. № 11. С. 28–59.

2. Красников Г. Я. Конструктивно-технологические особенности субмикронных МОІІтранзисторов. М.: Техносфера. 2002. С. 416.

3. Степаненко И. П. Основы микроэлектроники. М.: Советское радио, 1980. С. 424.

4. Пилипенко В. А., Пономарь В. Н., Горушко В. А. Управление свойствами тонкопленочных систем с применением импульсной фотонной обработки // Инженерно-физический журнал. 2003. Т. 76. № 4. С. 95–98.

5. Пилипенко В. А. Быстрые термообработки в технологии СБИС. Минск: Изд. центр БГУ, 2004. С. 531.

6. Анищик В. М., Пилипенко В. А. Физические основы быстрой термообработки. Геттерирование, отжиг ионнолегированных слоев, БТО в технологии СБИС. Минск: БГУ, 2001. С. 149.

7. Зи С. Физика полупроводников. М.: Мир. 1984. Т. 1. С. 405.

8. Van Overstraten, De Man H. Measurement of the ionization rates in diffusion silicon p-n-junctions // Sol. St. Electron. – 1970. Vol. 13. No 5. P. 583–608.

9. Пилипенко В. А., Вечер Д. В., Горушко В. А. и др. Моделирование параметров биполярных транзисторов // Инженерно-физический журнал. 2007. Т. 80. № 3. С. 181–187.

СОГЛАСОВАНИЕ КОМБИНИРОВАННОЙ ДВУХЗОННОЙ МОДЕЛИ РЕЗОНАНСНО-ТУННЕЛЬНОГО ДИОДА С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

И. И. Абрамов, И. А. Гончаренко, И. В. Коломейцева

Белорусский государственный университет информатики и радиоэлектроники, nanodev@bsuir.edu.by

введение

Одним из приборов, подтверждающим огромные потенциальные возможности твердотельной наноэлектроники, является резонансно-туннельный диод (РТД). Серьезная проблема при его разработке и исследовании связана с недостаточной адекватностью большинства известных моделей различных формализмов [1].

В данной работе проиллюстрирована адекватность предложенной комбинированной двухзонной модели РТД путем сравнения результатов моделирования с экспериментальными данными. Проанализировано влияние поперечного волнового вектора на результаты расчета вольт-амперных характеристик (ВАХ) исследуемого прибора.

модель

Описание двухзонной комбинированной модели приведено в [2, 3], поэтому ограничимся основными положениями. Модель предназначена для моделирования РТД