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In 2012 it was proved that real algebraic numbers follow a non-uniform but regular distribution, where the respective
definitions go back to H. Weyl (1916) and A. Baker and W. Schmidt (1970). The largest deviations from the uniform dis-
tribution occur in neighborhoods of rational numbers with small denominators. In this article the authors are first to specify
a general condition that guarantees the presence of a large quantity of real algebraic numbers in a small interval. Under
this condition, the distribution of real algebraic numbers attains even stronger regularity properties, indicating that there is
a chance of proving Wirsing’s conjecture on approximation of real numbers by algebraic numbers and algebraic integers.
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theorem.

Introduction

A sequence of real numbers can satisfy a number of properties related to the evenness of its distribution.
The simplest property of this type is everywhere density. A more restrictive property — uniform distribution —
was defined by Weyl [1; 2], who proved the eponymous uniform distribution criterion. Weyl used this criterion

to prove that the sequence {(xn}, n=1,2, ..., where curly braces denote the fractional parts, is uniformly dis-

tributed on the segment [O, 1) if and only if o is irrational.

The uniform distribution property is often too restrictive, which motivated Baker and Schmidt to introduce
the concept of a regular distribution [3]. A regular sequence of numbers has the following property: for an ar-
bitrary interval, we can choose sufficiently many numbers that lie in that interval from the first N members of
sequence, and these numbers also satisfy a natural lower bound on the minimal distance between them.

Baker and Schmidt proved the regularity of the set of real algebraic numbers and found an exact lower
bound for the Hausdorff measure of the set of real numbers with a given order of approximation by algebraic
numbers [3; 4].

Regularity was instrumental towards proving analogues of Khinchine’s theorem [5] for polynomials [6; 7],
as well as nondegenerate curves and surfaces [8—10].

Preliminaries and methodology

We are going to show that the regularity property can be generalized for small intervals. We are going to
consider first K numbers of a sequence o.,, 0., ..., 0 lying in the interval S of length uS= K, /> 0. Our results
are a natural generalization of the papers [11; 12].

Let deg P = n be the degree and H = H(P) =maX,. .,

aj‘ be the height of a polynomial

n—1

P(x)=anx"+ a, X" +..+ax+aqg€ Z[x], a, #0.

For a sufficiently large O, we define the class of polynomials
P.(0) = {Pe Z[x]:degP < n, H(P) < Q},

Let o, O, ..., 0, be the roots of P(x). The constants c,, c,, ... are assumed to depend on 1 but not on H
or Q; #4 denotes the cardinality of a finite set 4; W8 is the Lebesque measure of a set B < R. The set of all
roots of the polynomials P(x) € P,(Q) will be denoted as T,(Q). Clearly, we have #7,(Q) < (20 +1)"",
and #T,(Q) < n(20Q +1)""". A well-known result from [3], which is obvious for an odd degree n, states that

#Tn(Q) N R > Q""" The paper [12] proves that real algebraic numbers, ordered so that the height of the

respective minimal polynomials is monotone nondecreasing, are uniformly distributed only if n = 1, 1. e., if
they are rational.
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We are going to study the distribution of the numbers in the set 7,(Q) M [0, 1) on short intervals I < [0, 1),

w = Q" y> 1. Any finite interval [a, b) can be substituted for [0, 1), but the formulas will become somewhat

more complicated. Note that some of the theorems proved below can be generalized for the case where we
replace polynomials with nondegenerate functions [8—-10; 13].

Distribution of algebraic numbers in short intervals of the same length can vary dramatically. A recent ar-
ticle [11] proves that:

a) there exist intervals /, of length u/, = 0.50 " such that T,(Q) N 1, = @ for an arbitrary n;

b) if the constant c, is sufficiently large, then for any interval I,, u, > c,Q ', there exists a constant ¢, > 0
such that

#T(0) N 1, > ;0" 'ul,.

The statement a) can be proved by using rather basic properties of integer polynomials and their roots.
However, the proof of the statement b) is more complex and is based on several recent theorems proved in
metric Diophantine approximation [11].

It is easy to see that the number of intervals of type /, which do not contain algebraic numbers isn’t large.
Indeed, from [3] we know that

#T(0) " [0,1)> ¢,0"*".

Discussion and results, conclusion

In this paper we specify the condition on the intervals 7 of length u/ = Q™" where vy, > 1, which ensures that
these intervals contain algebraic numbers from the class 7, (Q) A similar condition for vy, = % was proved in [14].

From Minkowski’s theorem on linear forms [15] we have that for all x e [O, 1) and Q > 1 there exists an
integer polynomial P(x) eP (Q) such that

|P(x)| < 2(n+1)0™"

1

The exponent —n in the right-hand side of this inequality is optimal since for x, = 2 " we have
|P (x1 )| > c;Q™". From Sprindzuk’s theorem [16] we have that the inequality |P (x)| < Q7", w> n, can be satis-
fied only if x € B, < [0, 1), uB, <, forall € > 0. Therefore, if the set B, consists of points x € [0, 1) satisfying

the condition |P;€ (x)| < Q""" and Q is sufficiently large, then uB, < ¢,, €, > 0. Moreover, there is a known
1
upper bound for this measure: uB, < c,Q .

Let us prove several upper bounds for the quantity #7 n(Q) N1
Theorem 1. For pl, = Q7%,0<v, < 1 we have

#T (Q) N1, <n*2"° 0" ul,.
Proof. Let us assume the opposite. Taking ¢, =n"2"">, we have
#T (0)N1,>c, 0" 7.
Take b = (a,, ..., a,), i. e., a vector formed from the coefficients of P(x). Since #{[;1} =(20+1)' <2""'Q"
for O > Q,, we can choose at least /, = ¢,27" "' Q'™ " polynomials with the same vector 51 in the class of poly-
nomials P(x) € P,(Q) with roots o, € T,(Q) N 1,. The differences obtained by subtracting these polynomials

from each other are nonzero integers. If o, is a root of P (x) € P,(Q) lying in the interval ,, then a Tailor
expansion of P(x) on /, yields that

1

P(¥)=Plon )+ o )(x = 0,) 4 S (e )(x = @, o 1S5, ()

Pi(ali) =0,

E'(O(”)(x _ (X”)| < nZQlf"{z,

where O > Q,. The absolute values of the remaining terms of the expansion (1) are bounded from above by
nQ' ", allowing us to write

6
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|P(x) < 210" ™.
Consider the differences
R(x)=P, (x)-BR(x),1< <} -1
The polynomials R, (x) are different nonzero integers satisfying the inequality
IR, (x)] < 270"

For a sufficiently large /,, one of them must be larger than 2n°Q'~" in absolute value, which contradicts the
previous inequality.
Sprindzhuk showed [16] that metric theorems on integer polynomials also hold if we go from P(x) to the

. 1 . o .
polynomials B, (x)= P(x — m),me Z,orto P,(x)= x”P(;). Using these substitutions, we can transition from
arbitrary polynomials to ones satisfying the condition

|a,| > c,H (P). )
The condition (2) makes it easy to prove that for all roots o, 1 <i < n, of the polynomial P(x) we have
‘Ocj‘ < ¢y [7; 16]. From now on, we can assume that the polynomials P (x) € R,(Q) satisfy the condition (2), and

that all roots of these polynomials are bounded in absolute value by a constant that depends on n but doesn’t
depend on H or Q.

Let us introduce a classification of our intervals. An interval / of length |I | =Q "iscalleda (k, v)—interval
if it contains a real algebraic number B, of degree deg, = k < n and height H(B,) < 0%, 0<v < 1.

Theorem 2. Fory, > k+ nv, (k, v)—intervals 1 contain no real algebraic points o, dego, = n, H(Ocl) <0.

Proof. Let Tl(x) = bx" + ...+ bx + b, denote the minimal polynomial of an algebraic number [3,, and
T,(x)=a,x" + ...+ a,x + a, be the minimal polynomial of o.,. The polynomials 7;(x) and 7,(x) have no com-

mon roots and their leading coefficients satisfy (2). Therefore, the roots B, ..., B, of the polynomials 7, (x), as
well as the roots o, ..., o, of Tz(x), are bounded in absolute value by a certain constant c,. This implies that

their resultant is nonzero, R(Tl, Tz) # 0. The root B, € I defines the type of the interval /. Let o, € /, then

vl =an T (o-B)=, 0

1<i<n,1<j<k

o, —B| <, 0. (3)

By the conditions of the theorem, the exponent in the right-hand side of (3) is negative, and the inequali-
ty (3) is contradictory for a sufficiently large Q.

If y, < k+ nv, then the interval /, can contain algebraic numbers, however, there is an upper bound on their
quantity.

Theorem 3. Fory,> 1+ v, an interval I, of length |I3| = Q™% contains at most 2" Q"' " algebraic num-

bers B, degB, =n, H(B,) < 0.
Proof. Assume the opposite, i. e.,

#{B, e 1, P(B,)= 0, P(x) e B(Q)} > 2" 70" ™.

Let the vector b, = (a,, ..., a,) made up from the coefficients of P(x) € P,(Q) be fixed. Clearly, we have

#b,}=(20+1)"'<270"", 0> Q)(n).
Thus at least Z, = 27 Q> * polynomials have an identical vector 52 For all of these polynomials }}(x), 1<j<i,

let us write Tailor expansions on the interval /; with respect to the root , = 3,, and let us estimate P(x) from
above.

’ 1 ” 1 n n
B(x)=P(B,)+P(B)(x—B) + EP (B)(x=B) +...+ =P (B)(x=B,),

n!

|P(x)| < n?Q" " + n%Ql’“ <2n’Q'"", 0> Q,
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Consider the differences

l
Ri(x)=F.i(x) = R(x), 1 j<h-122=2°0""" 4)
The number of different polynomials in (4) is at least 2°Q*~"*. We also have deg R. < 1, H(R,) < 20, and
poly gn; J
/
|ax+b|=|R(x)|< 4’0" " 1< j<l,-12 Z=2'0" (5)
From (5) we have
bj 2401 | |7 2A1-7,
x+a—f<4nQ “Clj‘ S4}’ZQ .

- . . . b . ..
If among 2°Q* " polynomials R j(x) = a;x + b; there exists at least one such that its root —;’ is different from

b . . . .
B, = ——2, let us consider the resultant of this polynomial @,x + b, and the polynomial R, = a,x + b, that defines
a 1 1

0
b b,
Wi\ 5 " g

the type of the interval 7.
1< ‘R(RO, R, =
The inequality (6) is contradictory for y; > 1 + v and Q > Q,. If all linear polynomials R j(x) are different but

< 8n°Q' 7T (©6)

have the same root _a_o’ they can be written as
0
k(ayx+b,), keZ.
. L
Since |a0| > 0.50°, and we can take £ to be larger than k, = gz, we must also have
|agk,y| > 807+,

|ayk,| < 40,
which is impossible for y; > 1 + v. This concludes the proof.
Consider an interval / of length /| = 0" which isn’t a (1, v)-interval. Let S(/) denote the number of algeb-
raic numbers P of degree deg = and height H (B) < Q lying in the interval 1.
Theorem 4. The number S (1 ) can be estimated from below as
S(I)=cQ" 'Y
for some constant ¢ = c(n)

To prove theorem 4, we are going to use the following lemmas.
Lemma 1. Let o, be the root of the polynomial P(x) closest to x. Then for P’(x) #0 and P'(OLI) # 0 we have

P(x)|P'(x)
v — o] < 27| ()| (o)

-1
>

|x—ocl|Sn

Lemma 1 is quite well-known [7; 16].
Lemma 2. Let P,(x) and 1’2(x) be integer polynomials without common roots such that

degR <n, degP,<n, H(R)<Q, H(R)<Q,
and on an interval J, uJ = Q", n > 0, we have the inequalities
max (B (), [B()) <0~
where T> 0. Then for any 8> 0 and a sufficiently large Q > Q,(8) we have the inequality

T+1+2max(t+1-m,0)<2n+ 8.
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A proof of lemma 2 can be found in [6].
Let B(x), ..., P,(x) € P,(Q) denote polynomials with roots in the interval I. Let us order their roots as
follows [16]:
|, (P) = 0, (P)) < |ot,(P) = 05 (P)| < ... < Jou, (P) = @, (P))-

Lete>0and g = £ For g, > 0 consider an ¢,-sieve for the quantities ‘(XI(P) —o,(P),j=2,3,...,n,de-
100 /

noting 7 = [8,‘1] +1:

I -1 I,
\ocl(P)—ocj(P)\:Q"’f(”), ’T<pj3%, LeZ, j=2,3,..,n

/ ) is finite, depends only on €, and doesn’t depend on Q. Take

ces by

Clearly, the number of vectors /= (12, L, .
m, = c,m polynomials E(x), and for each of them denote

o(P)= {x el: |P(x)| < Q”’}.
The set 6(P) consists of at most n intervals of length
C4Q—n—l+p|(P), 12 (P) — 12 + 13 ; + ln
If
m < e, Q" T,

then the measure of the set

is larger than 0.5|] | Since we have
|P(x)|< 0™, p <k,
the lemma above and the inequality |x - 0(1| < c, 07" ""* imply the existence of an algebraic number o, = OCI(P).

We can construct at least ¢,Q"*'~Y~* such algebraic numbers o, (}3) in the interval /.
Now let m, > ¢,Q™"~'**. Assume that
0<{m}<0.5¢,

where {ml} denotes the fractional part of the number m,, and the integer part is denoted as [m1 ]
From Dirichlet’s principle, if the constant ¢ is sufficiently large, then the interval / contains at least

my = ¢,Q"*' """ polynomials P,(x) € F,(Q) with identical leading coefficients a,, a,_,, ..., a, - Consider

Taylor expansions of the polynomials Pj(x) in the interval / with respect to the roots o ;:

B(x)=Po) + P(o, )(x =) + = P7(,)(x— a1, ) & e (xar,)

Since 2
6(0(”)_0’ }3‘,(0‘1/)(’“_ 0‘1,-) < c,Q' Tl
‘lp” (&’)(x %y )2 <077,

for all x € / we have
‘P/(x)‘ < CllQl_pl_Y+(n_l)gl.

Consider m, — 1 differences R,(x) formed by subtracting B(x) from the rest of the polynomials P,(x). Then

R J.(x) satisfy the inequalities:

‘R/‘H(x)‘ = ‘Pjﬂ(x) _Pl(x)‘ < 2611Q1_p'_y+(n_1)8',
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degR, , <n-— [ml] =p+7v-L
There exist at least Q%> such polynomials R, (x). Consider the resultant of R o (x) and the polynomial 7' (x):
IS‘R(R]‘H’ T)‘<CIZQ7~(P.+Y—1)+"1—Y—M' (7)
If
Y+pl>}‘(p1+7_1)+nls 3

then the inequality (7) is contradictory.
For n, = 1, the inequality (8) can be written as

Y+p>Mp+y-1)+1 9)
Since we have 0 <A < 1 and p, > 0, the inequality (9) follows from the inequality y > k(y - 1) + 1, which
holds if 1 <y < 2. Thus the assumption m, > cQ"*'~# "7 is contradictory, which proves theorem 4.
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