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Finite-difference time-domain method for numerical solution of Maxwell equations has
been applied to the problems of propagation and interaction of ultrashort light pulses in
the media with linear dispersion and kerr-like nonlinearity. The evolution of temporal and
spectral structures of femtosecond laser pulses has been analyzed in the modes of self-
and cross-phase modulation, formation of shock waves, and soliton-like temporal pulses.
Interaction of two ultrashort laser pulses in nonlinear media has been studied for the case
of collinear propagation. The peculiarities of transformation of spatial-temporal structure of
probe pulse have been analyzed numerically in the regime of its reflection from the pump
pulse.
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1. Introduction

The development of research in the field of
optics of ultrashort light pulses in the last decades
is due to the prospects of their application in
a variety of optical phenomena [1–3]. Extremely
short duration of light pulses allows us to study
fast processes under the pump-probe scheme. By
the nature of changes in the probe light pulse
one can estimate the changes of the properties of
the medium induced by pump pulse. Ultrashort
light pulses can also be used in fiber-optic
communication lines to transmit data at an
extremely high rate. Besides, high intensity of
ultrashort laser pulses can lead to initiation of
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nonlinear effects, e.g. generation of frequency
harmonics [4].

A necessary step in the study of the
interaction of laser radiation with matter is a
theoretical analysis and modeling of spatial and
temporal structure of ultrashort pulses under
they propagation in linear and nonlinear media,
taking into account the processes of diffraction-
limited spatial beams and dispersion of short
pulses. At present, special attention is paid to
the methods of modeling the propagation of
ultrashort pulses, based on the direct numerical
integration of Maxwell equations [5]. This
approach allows us to trace the dynamics of
the interaction of electromagnetic radiation with
various kinds of complex optical systems [6–
8], without resorting to any approximations and
simplifications. Adequate numerical simulation
makes it possible to largely replace labor-intensive
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and costly experimental work in the early stages
of research.

The aim of this work is the development
of theoretical and numerical model to describe
the evolution of the space-time structure of
ultrashort light pulses under they propagation
and interaction in nonlinear media.

The paper is structured as follows. Section
2 is devoted to the development of theoretical
and numerical models for the study of the laws
of propagation of high-power ultrashort laser
pulses in a medium with linear dispersion of
optical properties and the Kerr nonlinearity.
The developed approach is based on the
numerical solution of Maxwell equations by
finite-difference approximation in spatial and
temporal domain. Section 3 presents the results of
modeling of propagation and collinear interaction
of ultrashort pulses. The obtained results are
discussed in terms of transformation of spatial,
temporal and spectral characteristics of laser
pulses.

2. Theoretical model

In a theoretical consideration of propagation
of ultrashort laser pulses and beams in media with
dispersion and nonlinearity a wave equation is
usually used in the form [1]:
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a solution of which, as a rule, numerical,
allows to model the spatio-temporal evolution of
ultrashort light pulses and beams. Despite the
high prevalence in the literature of this type of
equation, it should be noted that in its derivation
priori laid an approximate description of the
dispersion properties of the medium k (ω) =

n (ω)ω/c in the form of the expansion in the
vicinity of the main frequency of the pulse ω0,
that is meant also quasi-monochromatic pulse:
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(m = 0, 1, 2, 3, . . .) are
valid for quasi-monochromatic approximations.
As a rule, the terms of the third and higher orders
are negligible for pulses with low bandwidth
in this equation as ∆ω ≪ ω0 and should be
considered only k1 and k2:
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where vg is the group velocity at the frequency
ω0. From the expression (3) it follows that k1
determines the velocity of propagation of the
pulse. The expression (4) for k2 determines the
change in the group velocity of the pulse as a
function of frequency. Therefore, parameter k2 is
the group velocity dispersion.

Application of this method for picosecond
pulses is apparently the most desirable, however,
to describe the evolution of femtosecond pulses
alternative approaches are developed [9–11]. In
particular, the promising is the use of FDTD-
method of direct numerical integration of Maxwell
equations.

The finite-difference time-domain method
(FDTD) is a powerful approach to numerical
analysis of Maxwell equations [12]. The FDTD
method is applicable for a wide range of complex
dielectric structures, constrained only by the
size of the computational space required for
the simulation. Due to its accuracy, the FDTD
method is widely used for simulation of light
propagation linear and nonlinear media [13–15],
in optical waveguides [16, 17], scattering media or
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photonic crystals [6–8]. FDTD is a grid method
for solving Maxwell equations. It uses the explicit
scheme of second order accuracy in time step
∆t and spatial grid ∆x, ∆y, ∆z, the sampling
proposed by Yee [12].

Solving the problem of propagation of
the light pulses in a medium with non-linear
dependence of the optical properties of the
intensity of acting radiation is based on the use
of Maxwell equations for the field vectors in the
form of:

∇× E⃗ = −µ

c

∂H⃗

∂t
, (5)

∇× H⃗ =
1

c

∂D⃗

∂t
. (6)

For cubic nonlinearity χ(3) of Kerr-type the
relationship between the vectors of the electric
displacement D⃗ and the electric field E⃗ taking
into account finite response time of nonlinearity
τrel is defined by the equations:

D⃗ (r⃗, t) =
[
εlin + 4πχ

(
t, E⃗

)]
E⃗ (r⃗, t) , (7)

τrel
∂χ

∂t
+ χ = χ(3)E⃗2. (8)

In one-dimensional case we will consider
the propagation of a plane electromagnetic wave
taking into account nonlinear effects. Then the
equations (1–2) take the dimensionless form:
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∂t̃
= −∂Ẽỹ
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, (9)
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where H̃z̃ = Hz̃/E0, Ẽỹ = Eỹ/E0, D̃ỹ = Dỹ/E0,
E0 is the maximum value of the amplitude of the
light pulse in the entrance of nonlinear medium;
x̃ = x/λ0, t̃ = t/T where λ0 is the wavelength
in vacuum, T = 1/ν is the period (ν is the
frequency) of electromagnetic oscillations.

According to the method used in the finite-
difference approximation differential equations
(5–6) are replaced by the following finite-
difference equations in space and time [18]:
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In these equations, ∆x̃ is the step over spatial
grid along the coordinate x̃, ∆t̃ is the time step;
the unknown functions F l (i) are connected with
the mesh nodes in the following way: F l (i) =

F
(
i∆x̃, l∆t̃

)
= F

(
x̃, t̃
)
.

Kinetic equation for determining the
nonlinear susceptibility of the medium (4) is
approximated as:
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and to find the amplitude of the electric field
in the next time step we use the following
approximation of the equation (3):

Ẽl+1
ỹ (i) =

D̃l+1
ỹ (i)

εlin (i) + 4πχl+1
nl (i)

. (14)

Thus, the numerical solution of the system
(7–10) allows us to describe the propagation
of the light pulse of arbitrary shape and
duration in the nonlinear medium. In the work,
the implementation of the FDTD method is
complemented by the use of so-called absorbing
boundary conditions [18], thus avoiding non-
physical wave reflection from the computational
domain boundaries. Also it is complied a
necessary stability condition in accordance with
Courant criterion: ∆t/∆x ≤ v where v is the
speed of light in the medium.

Let us notice, FDTD-method does not
provide a table setting of dependence of the
dielectric permittivity on the frequency. One of
the approaches of the dispersion modeling within
the FDTD-method is the auxiliary differential
equation method [19].

For calculations we use the model of Drude –
Lorentz dispersion of the dielectric permittivity:

εlin(ω) = 1−
ω2
ep

ω2 − ω2
e0 − iωγe

. (15)

To simulate the dispersion properties of the
medium displacement vector can be written as:

D⃗ = εlin (ω) E⃗. (16)
In one-dimensional case, equation (12), taking
into account the frequency dependence of the
dielectric permittivity (11), can be rewritten as
follows:

D̃ỹ =
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)
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Equation (13) can be transformed via the inverse
Fourier transform as:
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Let us proceed to dimensionless form by
substituting t = t̃T in (14):
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For the convenience of further calculations, we
introduce the following coefficients: a1 = γeT ,
a2 = ω2

e0T
2, a3 = T 2

(
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)
. After the final

transformation equation (15) can be written as
follows:
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Thus, the modeling of the light pulse
evolution in media with dispersion of the
dielectric permittivity is reduced to the numerical
solution of equations (7–8) and (16).

3. Results and discussions

First, let us construct the frequency
dependence of the real part of the dielectric
permittivity defined by the Drude – Lorentz
formula, and compare it with the dependence
given by the empirical formula of Sellmeier [20]
for quartz glass:

n2(λ) = 1+
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(21)

where the coefficients are: B1 = 0.6961663, B2 =

0.4079426, B3 = 0.8974794, C1 = 4.67914826 ·
10−3 µm2, C2 = 1.35120631 · 10−2 µm2, C3 =

97.9340025 µm2.
The following settings were selected to

calculate the spectral dependence of the dielectric
permittivity from the Drude – Lorentz formula:
λe0 = 0.7 µm, λep = 0.75 µm, γe = 0.001 fs. As
it shown in Fig. 1a of the dispersion dependence
of the refractive index in the wavelength range
of 1 ≤ λ ≤ 2 µm the real part of the
dielectric permittivity (curve 1) has the form
characteristic for the case of the medium with
normal dispersion. As seen in the region 1 ≤
λ ≤ 2 µm dispersion of the refractive index
significantly higher than that for a real material
calculated by the Sellmeier formula (curve 2).
Such a choice of these parameters enables to
demonstrate more clearly the role of dispersion
in the evolution of the space-time structure of the
laser pulse. The imaginary part of permittivity
in this spectral range is positive but close to
zero Im (ε) ≈ 0, which should lead to a slight
damping of the amplitude of the optical radiation
propagating in the material. In our case, the
dispersion relation calculated from Dure-Lorentz

FIG. 1. Dispersion dependencies: (a) - n(λ), (b) -
k2(λ). 1 – Drude – Lorentz formula; 2 – Sellmeier
formula.

formula (15), k2 > 0 (Fig. 1b) in considered
spectral range 1 ≤ λ ≤ 2 µm. Thus, the evolution
of ultrashort light pulses will be investigated in
the positive group velocity dispersion regime.

Numerical modeling of the problems for
short light pulses propagation in the media with
linear dispersion of the refractive index and kerr-
like nonlinearity has been performed for the
following cases: propagation of light pulses in
linear medium with dispersion; propagation of
intense light pulses in nonlinear regimes, joint
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action of linear dispersion and nonlinearity. In
the numerical modeling, it was assumed that
the source of the electromagnetic field is in
the form of a quasi-monochromatic wave with
pulse profile of Gaussian-like shape: Ey (t) =

E0 exp
[
− (t−t0)

2

2τ2p

]
sin
(
2π c

λ0
t
)

(where τp is a pulse
duration, and λ0 is a wavelength in vacuum).
The pulse is started from the left border of the
computation domain x = 0. The time evolution
of spatial distribution of electric field has been
calculated, and the results are presented in
Figs. 2–6.

FIG. 2. Evolution of ultrashort light pulse in linear
medium with dispersion. τp = 25 fs, λ0 = 1 µm. (in
color)

First, let us consider the effect of dispersion
on the temporal structure of a ultrashort pulse
with duration τp = 25 fs and wavelength
λ0 = 1 µm. Numerical calculation results are
presented in Fig. 2. One can see, there is a
broadening of the dispersion characteristic of the
light pulse as a result of differences in velocity of
propagation of various spectral components. Low-
frequency components propagates faster than
high-frequency components, and as a result the
pulse obtains a positive frequency modulation,
which corresponds to the normal dispersion
dn/dλ > 0. The delay of the spectral components

is determined by the difference between its
frequency and main frequency. Since the spectral
width is inversely proportional to the duration
of pulses, the pulses of shorter duration disperse
more quickly than pulses of longer duration. Also,
the nature and broadening rate of the pulses
depend on its the shape and on the presence of
frequency modulation.

Next, consider the problem of propagation
of ultrashort laser pulses in a Kerr medium
with instantaneous response nonlinearity (τrel =
0). The nonlinearity of the medium is given
in units χ(3)E2

0 . Fig. 3 shows the evolution of
temporal structure of pulse and its spectrum at
different depths of penetration of the nonlinear
medium. It is seen that the pulse shape, despite
the passage of a considerable distance varies
slightly, but the characteristic broadening of the
spectrum occurs sufficiently symmetrical about
the main frequency ω0 = 2πc/λ0. The broadening
is caused by a phase shift which is linearly
dependent on the intensity and the distance
traveled: φnl = −n2E

2 (t) zω0/c. This phase
shift leads to a broadening of the frequency
spectrum of the pulse, the value of which can
be estimated as: ∆ωnl ≈ φnl (0) /τp, that is
inversely proportional to the pulse duration. Note
also that the frequency modulation is positive,
that is, long-wavelength components arranged in
front of the pulse and the short-located at the
trailing edge. For small values of the nonlinearity
parameter results are in good agreement with
the typical solutions of the wave equation (1),
however, we used an approach that provides much
more information about the spatial and temporal
structure of the ultrashort light pulse, at the time,
as a solution to the slowly varying amplitude wave
equation allows us to investigate a change in the
envelope of the wave packet only.

When the initial pulse amplitude increases,
in units χ(3)E2

0 , there is a significant expansion
of the frequency spectrum of the pulse during
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FIG. 3. Evolution of ultrashort light pulse and its spectrum in nonlinear medium τp = 100 fs, λ0 = 1 µm,
χ(3)E2

0 = 0.01. (in color)

FIG. 4. Evolution of ultrashort light pulse and its
spectrum in nonlinear medium τp = 50 fs, λ0 = 1 µm,
χ(3)E2

0 = 0.05. (in color)

its propagation in the nonlinear medium. Also,
with the propagation in a nonlinear medium
steepening of the pulse tail develops, due to
the fact that the center of the Gaussian pulse

with high intensity has a great additive to the
refractive index (positive Kerr nonlinearity n2 >

0) and, consequently, a smaller group velocity.
As numerical calculations show, for a sufficiently
deep penetration of the pulse in the nonlinear
medium a shock wave of the optical pulse envelope
may develop (Fig. 4).

The combination of group velocity
dispersion and nonlinear refraction creates
the preconditions for the implementation of a
variety of phenomena such as the formation of
optical solitons, spatial-temporal self-focusing
or defocusing. Various combinations of the
coefficient of nonlinearity n2 and group velocity
dispersion can be quite varied alter the spatial
and temporal characteristics of the light pulses
[1]. By analogy with light beams, short pulses
(wave packets) may experience self compression
at k2n2 < 0 or decompression at k2n2 > 0. This
is due to the fact that a pulse having a Gaussian
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FIG. 5. Evolution of ultrashort light pulse and its spectrum in nonlinear medium with dispersion τp = 100 fs,
λ0 = 1 µm, χ(3)E2

0 = 0.01. (in color)

temporal profile acquires negative frequency
modulation in medium with n2 > 0. Such an
impulse is compressed itself with anomalous
group velocity dispersion, i.e. at k2n2 < 0.
With a positive sign of the product of the
nonlinearity coefficients and group velocity
dispersion decompression develops. Thus, the
ratio of the linear effects of dispersion and
nonlinearity determines the resulting change
in the temporal and spectral structure of an
ultrashort light pulse.

Let us consider the evolution of an ultrashort
light pulse in a medium with dispersion and
nonlinearity (Fig. 5). As shown by numerical
calculations, even a small quantity of non-
linearity leads to a greater broadening of a light
pulse in comparison with the case of linear
dispersion. The nature of this broadening is
determined by the dominant process. Thus, for
short pulse duration the group velocity dispersion

FIG. 6. Formation of soliton-like pulse. τp = 50 fs,
λ0 = 1 µm, χ(3)E2

0 = −0.0002. (in color)

dominates and the effect of nonlinearity simply
increases the broadening rate, but its nature is no
different. The situation is changing significantly
for long pulse duration. In this case, in addition
to increasing the broadening rate change occurs
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and the pulse waveform. Its envelope approaches
the rectangular shape. Increasing the duration
is resulting in that the effect of dispersion on
the initial broadening is small and its evolution
is determined by self-action effects. This leads,
firstly, to the steepening of the pulse shape.
Secondly, due to self-phase modulation new
frequency components are generated and shifted
to longer wavelengths in the forefront and to
shorter wavelengths at the back front of the
pulse. These circumstances lead to an increase
the role of dispersion, since it depends on the
frequency modulation and pulse shape. Therefore
steepening will begin to flatten, leading to
a rectangular pulse shape. Broadening rate is
increased because in the normal dispersion mode
the blue components are gathering in the tail
(due to self-phase modulation) of pulse, and
are moving more slowly than the front-line red.
Also, the nature of the broadening of the pulse
spectrum is changing. From Fig. 5c we see
that the spectral broadening occurs practically
without oscillations characteristic of a "pure"
nonlinearity. Thus, the dispersion effect smooths
these oscillations.

In accordance with the selected dispersion
dependence of the spread of an ultrashort light
pulse is considered for the case when k2 > 0.
If we select a negative nonlinearity (n2 < 0),
one can get a soliton regime of propagation of
ultrashort light pulses. The results of numerical
modeling of this mode are shown in Fig. 6 for the
case of a pulse width and negative nonlinearity.
One can see that the pulse in the medium at first
is slightly compressed itself and then propagates
over significant distances, practically maintaining
the form.

In conclusion, we consider the problem of
collinear interaction of ultrashort light pulses in
a medium with linear dispersion and Kerr-type
nonlinearity. As it was shown in the work [21], at
a certain ratio parameters of light pulses and the

FIG. 7. Reflection of the signal pulse (2) from
the pump pulse (1). τpp = 100 fs, τps = 50 fs,
λ0p = 1.45 µm, λ0s = 1.5 µm, χ(3)E2

0p =

0(a), 0.002(b), 0.004(c) (in color)

nonlinear medium in which they are propagated,
the mode of reflection of a weak signal pulse
from a powerful pump pulse can be realized. This

Nonlinear Phenomena in Complex Systems Vol. 19, no. 2, 2016
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mode is an analogue of the well-known mode
of total internal reflection of light beams from
induced inhomogeneity of the refractive index in
the nonlinear defocusing medium [22].

The following parameters were chosen for the
implementation of the light pulses reflected mode:
the pump pulse wavelength is λ0p = 1.45 µm, the
pump pulse duration is τpp = 100 fs, the signal
pulse wavelength is λ0s = 1.5 µm, the probe pulse
duration is τps = 50 fs, the initial time delay
between the pulses was varied in the range of
50−100 fs, and intensity of the pump pulse ranged
from χ(3)E2

0p = 0.001÷ 0.01; optical properties of
the medium dispersion were modeled as before,
using the Drude – Lorentz.

Numerical simulation results are shown in
Figure 7 for different values of nonlinearity
of the medium (in the units of χ(3)E2

0p). In
the linear mode (Fig. 7) due to the velocity
difference between the light pulses (velocity of
the probe pulse is greater than the velocity
of the pump pulse, as n (λ0s) < n (λ0p)) the
probe pulse catches up with the pump pulse
and then passes through it without interacting.
Increasing the pump pulse amplitude increases
the refractive index of the medium in the space
through which the pulse is propagating because
n2 > 0. Consequently, the refractive index
is increased for the signal pulse and, as a
consequence, decreases its velocity of propagation
in the space occupied by the pumping pulse.
The collision of the probe pulse with induced
inhomogeneity of the refractive index leads to
its partial reflection. Probe pulse is divided
into two components; the reflected component
is slowing, when the transmitted through the
optical heterogeneity component passes through
the pump pulse (Fig. 7b). A further increase of
the pump pulse amplitude leads to an increase in
the coefficient of reflection of the probe pulse from
induced inhomogeneity of the refractive index
(Fig. 7c). Thus, by changing the amplitude of

the pump pulse, it is possible to control the
dynamic interaction between the two ultrashort
light pulses propagating collinearly in a nonlinear
medium.

4. Conclusions

The FDTD-method for numerical solution
of Maxwell equations, which allows at the same
time clearly and in detail present the process of
propagation of electromagnetic waves in various
media, has been applied to solve problems of
the propagation and interaction of ultrashort
light pulses in nonlinear materials. To simulate
the dispersion properties of optical materials,
the auxiliary differential equation method was
used. The combined use of these methods has
allowed the development of an effective modeling
algorithm to describe transformation of the space-
time structure of a light field in a Kerr nonlinear
medium.

Performed numerical experiments allow
demonstrating the effects of self-phase
modulation of high-power ultrashort light
pulses in nonlinear media, the mode of formation
of the shock wave of the envelope, the formation
of optical solitons of the envelope. Comparison
of the evolution of the envelope for temporal
shape of ultrashort light pulses and their spectra
with the results of solution of the nonlinear wave
equation leads to the conclusion that used in
this paper Drude – Lorentz model satisfactorily
describes the effect of dispersion in the presence
of a non-linear response of the medium. The
developed method of numerical solution of the
Maxwell equations can not only correctly describe
the basic features of change in temporal and
spectral shape of an ultrashort light pulse, but
also to get detailed information on its internal
structure without any simplifying assumptions.

It is also shown that by changing the
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amplitude of a pump pulse, it is possible to control
dynamic interaction between two ultrashort light

pulses propagating collinearly in a nonlinear
medium.
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