Γ еометрия и алгебра

${ m G}$ eometry and algebra

УДК 004.6

СВОЙСТВА И ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНЫХ ИНВАРИАНТОВ *G*-ОРБИТ ОШИБОК В РЕВЕРСИВНЫХ КОДАХ

А. В. КУШНЕРОВ¹⁾, В. А. ЛИПНИЦКИЙ ^{1), 2)}

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь ²⁾Военная академия Республики Беларусь, пр. Независимости, 220, 220057, г. Минск, Беларусь

Впервые описана двухступенчатая процедура полиномиально-норменной коррекции ошибок реверсивными помехоустойчивыми кодами, которые задаются проверочной матрицей $H_{\scriptscriptstyle R} = \left(\beta^i, \, \beta^{-i}\right)^{\rm T}, \, 0 \leq i \leq n-1, \, \beta = \alpha^{\frac{2^m-1}{n}},$ где α — примитивный элемент поля $GF\left(2^m\right)$; n — длина кода. Такой подход позволяет существенно ускорить процесс обнаружения и исправления ошибок. Также представлен алгоритм нахождения и исправления ошибок в зашумленном сообщении. На примере реверсивного кода $C_{\scriptscriptstyle R}$ длиной 89 с минимальным расстоянием 7 показана процедура исправления конкретных ошибок.

Ключевые слова: линейные помехоустойчивые коды; минимальное расстояние кода; реверсивные коды; БЧХ-коды; синдром ошибок; норменный метод декодирования.

Образец цитирования:

Кушнеров АВ, Липницкий ВА. Свойства и применение полиномиальных инвариантов *G*-орбит ошибок в реверсивных кодах. Журнал Белорусского государственного университета. Математика. Информатика. 2018;3:21–28.

For citation:

Kushnerov AV, Lipnitski VA. Properties and applications of *G*-orbits polynomial invariants of errors in reverse codes. *Journal of the Belarusian State University. Mathematics and Informatics*. 2018;3:21–28. Russian.

Авторы:

Александр Викторович Кушнеров — аспирант кафедры дифференциальных уравнений и системного анализа механико-математического факультета. Научный руководитель — В. А. Липницкий.

Валерий Антонович Липницкий – доктор технических наук, профессор; заведующий кафедрой высшей математики²⁾, профессор кафедры дифференциальных уравнений и системного анализа механико-математического факультета¹⁾.

Authors:

Alexander V. Kushnerov, postgraduate student at the department of differential equations and system analyses, faculty of mechanics and mathematics.

al.v.kushnerov@gmail.com

Valery A. Lipnitski, doctor of science (engineering), full professor; head of the department of higher mathematics^b and professor at the department of differential equations and systems analysis, faculty of mechanics and mathematics^a. *valipnitski@yandex.by*

PROPERTIES AND APPLICATIONS OF G-ORBITS POLYNOMIAL INVARIANTS OF ERRORS IN REVERSE CODES

A. V. KUSHNEROV^a, V. A. LIPNITSKI^{a, b}

^aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus ^bMilitary Academy of the Republic of Belarus, 220 Niezaliežnasci Avenue, Minsk 220057, Belarus Corresponding author: A. V. Kushnerov (al.v.kushnerov@gmail.com)

In this paper is described a two-step procedure for polynomial-norm error correction with reverse error correcting codes. Such codes of length n traditionally are defined by check matrix $H_R = (\beta^i, \beta^{-i})^T$, $0 \le i \le n-1$, $\beta = \alpha^{\frac{2^m-1}{n}}$ and α is primitive element of $GF(2^m)$. Also in paper you can find a description of error correction algorithm and an example based on reverse code of length 89.

Key words: error correcting codes; code minimal distance; reverse codes; BCH codes; norm method of error correction.

1. Введение

Реверсивные коды примыкают к семейству БЧХ-кодов с конструктивным расстоянием 5 [1]. С 1990-х гг. проводятся систематические исследования класса реверсивных кодов, сначала примитивных, лексикографически упорядоченных, а также циклических [2, гл. 6; 3; 4], а затем и непримитивных [5; 6]. Установлены некоторые их общие свойства, в диапазоне длин от 7 до 507 найдены случаи, когда они совпадают с кодами Хемминга, БЧХ-кодами, а также когда минимальное расстояние непримитивных реверсивных кодов превышает конструктивное.

В данной работе развиваются исследования, начатые в [6]. Для перспективных непримитивных реверсивных кодов C_R (минимальное расстояние которых d > 5), следуя [7], вводятся полиномиальные инварианты G-орбит ошибок относительно группы G циклических и циклотомических автоморфизмов кода C_R , разрабатываются полиномиально-норменные методы коррекции ошибок весом 1—3 этими кодами.

2. Необходимые сведения о реверсивных кодах

Двоичный реверсивный код C_R определен над полем Галуа $GF\left(2^m\right)$ из 2^m элементов (m>2), имеет нечетную длину n, являющуюся делителем числа 2^m-1 , а также размерность k=n-2m. Здесь следует помнить о минимальности m: для всех натуральных значений $\mu < m$ величина $2^\mu-1$ не делится на n. Код C_R однозначно задается своей проверочной матрицей

$$H_{R} = \begin{pmatrix} \beta^{0} & \beta^{1} & \beta^{2} & \dots & \beta^{n-1} \\ \beta^{0} & \beta^{-1} & \beta^{-2} & \dots & \beta^{1-n} \end{pmatrix}, \tag{1}$$

 $0 \le i \le n-1$, 2m < n, $\beta = \alpha^z$ для примитивного элемента α поля Галуа $GF(2^m)$, $z = \frac{2^m-1}{n}$. При $n = 2^m-1$ величина $\beta = \alpha$, и код C_R называется примитивным. В противном случае код называется непримитивным [1; 2].

Коды с проверочной матрицей (1), как и БЧХ-коды с проверочной матрицей $H_{BCH} = \left(\beta^i, \beta^{3i}\right)^T$, создавались в расчете на исправление двойных ошибок, и потому их называют кодами с конструктивным расстоянием 5. У примитивных БЧХ-кодов эти расчеты действительно подтвердились [1, гл. 7]. Что же касается примитивных реверсивных кодов, то при четных значениях m (тогда $n = 2^m - 1$ делится на 3) они имеют минимальное расстояние d = 3, а при нечетных m (тогда $n = 2^m - 1$ не делится на 3) действительно имеют d = 5 [1; 6].

3. Проблема коррекции трехкратных ошибок реверсивными кодами $C_{\!\scriptscriptstyle R}^{^+}$

Потенциальная возможность обнаружения и исправления трехкратной ошибки в коде C_R с минимальным расстоянием 7 представляет собой реальную проблему, не решаемую стандартными синдромными методами. Действительно, рассмотрим w – сообщение, принятое в некоторой информационно-коммуникационной системе (ИКС) с двоичным кодом C_R над полем $GF\left(2^m\right)$ с проверочной

матрицей H_R . Тогда синдром зашумленного сообщения представим в виде $S(w) = H_R w^{\rm T} = (s_1, s_2)$, где s_1, s_2 – элементы поля $GF(2^m)$; w = c + e для передаваемого кодового слова c и вектора-ошибки e. По фундаментальному свойству проверочной матрицы кода $H_R c^{\rm T} = 0$, поэтому S(w) = S(e), т. е. зависит только от вектора-ошибки e. Отметим также, что все синдромы ошибок корректируемой совокупности попарно различны. Названные обстоятельства являются основой всех синдромных методов коррекции ошибок. Для определения трех ошибочных позиций вектора-ошибки весом 3 необходимо отыскать решение системы из двух уравнений

$$\begin{cases} x + y + z = s_1, \\ x^{-1} + y^{-1} + z^{-1} = s_2 \end{cases}$$

относительно переменных x, y, z. Очевидно, что это решение не может быть однозначным в силу неопределенности системы.

Альтернативным методом коррекции таких ошибок является норменный.

4. Основы теории норм синдромов для непримитивных реверсивных кодов

В указанной теории базовым является понятие нормы синдрома. Пусть ИКС, функционирующая на основе двоичного реверсивного кода C_R длиной n над полем $GF\left(2^m\right)$, приняла сообщение w с синдромом $S(w) = H_R w^T = (s_1, s_2) \neq 0$. Согласно [2] нормой синдрома S(w) в коде C_R называется элемент поля $GF\left(2^m\right)$, который вычисляется через компоненты синдрома по формуле $N\left(S(w)\right) = s_1 s_2$.

Главная задача декодирования сообщения — найти вектор ошибки, приобретенной в процессе его передачи. Теория автоморфизмов кодов позволяет разбить множество исправляемых ошибок на непересекающиеся классы эквивалентности, называемые Γ -орбитами. Циклические коды выделяются из класса линейных тем, что σ — оператор циклического сдвига координат векторов вправо на одну позицию по циклу — является автоморфизмом этих кодов. Коды C_R с проверочной матрицей (1) относятся к классу циклических [1–4]. Через Γ обозначим циклическую подгруппу, порожденную автоморфизмом σ в группе $\operatorname{Aut}(C_R)$. Это коммутативная группа порядка n. Два вектора e_1 , e_2 из пространства векторов-ошибок E_n называют эквивалентными, если выполнено соотношение $e_1 = \sigma^k(e_2)$. Это отношение эквивалентности разбивает все пространство возможных ошибок V_n над полем $\mathbb{Z}/2\mathbb{Z}$ на непересекающиеся классы, называемые Γ -орбитами (детали в [2–4]).

Поскольку длина n у кодов C_R нечетна и при условии d > 5 не делится на 3 (см. разд. 2), то все ошибки весом 1-3 в этих кодах делятся на полные Γ -орбиты, содержащие по n векторов-ошибок в каждой. Каждая Γ -орбита J таких ошибок однозначно определяется любым своим представителем e, циклическим сдвигом координат которого могут быть получены все n ошибок Γ -орбиты:

$$J = \{e, \sigma(e), ..., \sigma^{n-1}(e)\} = \langle e \rangle_{\Gamma} = \langle e \rangle.$$

Ясно, что $\sigma^n(e) = e$.

Как известно [2; 3], если $S(w) = (s_1, s_2)$, то

$$S(\sigma(w)) = (\beta s_1, \beta^{-1} s_2). \tag{2}$$

Благодаря свойству, выражаемому формулой (2), спектр синдромов, т. е. множество всех различных синдромов векторов-ошибок каждой Γ -орбиты J, равномощен самой Γ -орбите и взаимно однозначно соответствует ее циклической структуре: $\sigma^k(e) = e^*$ тогда и только тогда, когда показатели компонент синдромов $S(e) = (s_1, s_2)$ и $S(e^*) = (s_1^*, s_2^*)$ связаны равенствами

$$\deg s_1^* = \deg s_1 + kz, \ \deg s_2^* = \deg s_2 - kz. \tag{3}$$

Другими словами, два вектора-ошибки принадлежат одной Γ -орбите тогда и только тогда, когда разность показателей одноименных компонент их синдромов делится на z.

Таким образом, вектор-ошибка по синдромам с помощью формул (3) однозначно определяется внутри каждой Γ -орбиты. Более того, каждый вектор-ошибка принадлежит лишь одной Γ -орбите, следовательно, разность показателей синдромов будет делиться на z в единственном случае, когда эти векторы лежат в одной Γ -орбите.

Из формулы (2) следует, что норма синдрома $N(S(w)) = N(S(\sigma(w))) = N$ постоянна на всех векторах каждой отдельно взятой Γ -орбиты, и потому называется нормой самой Γ -орбиты. Как у примитивных, так и у непримитивных кодов C_R нормы Γ -орбит ошибок весом 1, 2 попарно различны и отличны от 0, что легко проверяется повторением доказательства теоремы 4.8 из [3]. Что же касается норм Γ -орбит векторов-ошибок весом 3 у непримитивных кодов C_R^+ , то здесь возможны отдельные совпадения. Не доказано (в отличие от двойных ошибок) отсутствие Γ -орбит тройных ошибок с нормой, равной 1; среди них вполне могут найтись Γ -орбиты, с нормой 0 или совпадающей с нормой какойлибо Γ -орбиты двойных ошибок, с совпадающими между собой нормами.

Во-первых, число Γ -орбит декодируемой совокупности K векторов-ошибок для реверсивного кода C_R длиной n с минимальным расстоянием 7 равно $\frac{1}{n}(C_n^1+C_n^2+C_n^3)=\frac{n^2+5}{6}$, что вполне может оказаться бо́льшим 2^m – количества возможных значений норм синдромов. У всех перечисленных выше кодов C_R^+ эта величина не превосходит 2^m . Во-вторых, имеется более глубокая, внутренняя причина возможности таких совпадений. У примитивного кода C_R спектр синдромов S(J) каждой Γ -орбиты J в определенном смысле полный. А именно, если для вектора $\overline{e} \in J$ синдром $S(\overline{e}) = (s_1, s_2)$ таков, что $s_1 \neq 0$, то первые компоненты спектра S(J) составляют в силу формулы (2) всю мультипликативную группу $GF\left(2^m\right)^*$ порядка 2^m-1 . Аналогичная ситуация и для второй компоненты синдрома, если $s_2 \neq 0$. У непримитивного же кода C_R при $s_1 \neq 0$ первые компоненты спектра S(J) составляют в силу формулы (2) смежный класс в группе $GF\left(2^m\right)^*$, порожденный элементом s_1 по циклической подгруппе $<\beta>$ порядка $n=\frac{2^m-1}{z}$. Вполне может найтись вектор ошибок \overline{e}^* с синдромом $S\left(\overline{e}^*\right)=\left(\alpha^i s_1, \alpha^{-i} s_2\right)$ для некоторого целого i, $1 \leq i < z$. Несложно видеть, что нормы Γ -орбит J и $<\overline{e}^*>_{\Gamma}$ совпадают, а спектры синдромов не пересекаются.

Таким образом, у непримитивных реверсивных кодов C_{R} может существовать до z попарно различных Γ -орбит с одинаковыми нормами.

Пример 1. Реверсивный код C_R^+ длиной 89 определен над полем $GF(2^{11})$. Он способен декодировать 117 569 векторов-ошибок весом 1–3, которые группируются в 1321 Γ -орбиту: 1 Γ -орбита ошибок весом 1 и нормой 1, 44 полные Γ -орбиты ошибок весом 2 с попарно различными нормами, отличными от 0 и 1, и 1276 полных Γ -орбит тройных ошибок. Среди последних 33 Γ -орбиты имеют уникальные нормы, 924 Γ -орбиты — по 2 одинаковые нормы, 33 Γ -орбиты — по 3 одинаковые нормы, 244 Γ -орбиты — по 4 одинаковые нормы, а также 22 Γ -орбиты тройных ошибок имеют одинаковые нормы с 11 Γ -орбитами двойных ошибок. Таким образом, 1321 Γ -орбита распределяются на 614 групп по значениям своих норм, что по-прежнему составляет достаточно внушительное количество.

5. Норменный метод коррекции ошибок реверсивными кодами C_R^+

Метод заключается в следующем. Составляют список образующих e_i всех $\frac{n^2+5}{6}$ Γ -орбит векторовошибок совокупности K, синдромов образующих $S(e_i)$ и их норм синдромов $N_i = N(S(e_i))$. Естественно, Γ -орбиты сортируют в группы с одинаковыми нормами. Для принятого сообщения w декодер ИКС в обязательном порядке вычисляет его синдром S(w). Если $S(w) \neq 0$, находят N = N(S(w)). Эту величину сравнивают со списком попарно различных норм N_i . Пусть $N = N_k$. Синдром $S(w) = (s_1, s_2)$ сравнивают с синдромами образующих Γ -орбит с нормой N_k . В силу формул (3) найдется только одна орбита $\langle e_k \rangle$ с образующей e_k и синдромом $S(e_k) = \left(s_1^k, s_2^k\right)$ такая, что разность показателей $\deg(s_1) - \deg(s_1^k)$ нацело делится на z. Если соответствующее частное равно τ , то искомый вектор-ошибка e в сообщении w вычисляется по формуле $e = \sigma^{\tau \pmod{n}}(e_k)$.

Норменный метод достаточно успешно решает задачу нахождения вектора-ошибки. Однако число Γ -орбит декодируемой совокупности для реверсивного кода C_R длиной n с минимальным расстоянием 7,

равное $\frac{n^2+5}{6}$, будет быстро увеличиваться с ростом n, что, естественно, затрудняет задачи эффективного поиска нужной информации в быстро растущих объемах хранения, замедляет работу декодера.

Определенного ускорения процесса декодирования можно добиться норменным методом с использованием полиномиальных инвариантов [7].

6. G-орбиты ошибок и их полиномиальные инварианты

Определим на множестве $T = \{1, 2, ..., n\}$, где n — нечетно, преобразование ϕ по правилу

$$\varphi(i) = \begin{cases} 2i - 1, 2i - 1 \le n, \\ 2i - 1 - n, 2i - 1 > n. \end{cases}$$

Для нечетных n оператор ϕ является взаимно однозначным на множестве T. Применение данного оператора к вектору-ошибке подразумевает перестановку его координат по правилу ϕ . Ее называют циклотомической перестановкой на пространстве ошибок E_n и обычно по-прежнему обозначают через ϕ . Повторяя почти дословно доказательство предложения 3.17 из [3], можно убедиться, что она является автоморфизмом любого циклического кода C_R с проверочной матрицей (1), причем порядка m. Автоморфизмы σ и ϕ образуют некоммутативную группу G порядка m [1; 2].

Два вектора \overline{f} , \overline{g} из пространства ошибок E_n называются G-эквивалентными, если найдется такая подстановка $\tau = \varphi^i \sigma^j$, что $\overline{g} = \tau(\overline{f})$. Совокупность всех попарно G-эквивалентных векторов из пространства E_n называют G-орбитой. Для реверсивного кода C_R , определенного над полем $GF\left(2^m\right)$, любая G-орбита J_G имеет четкую структуру и состоит из всех векторов Γ -орбит, определяемых следующим соотношением:

$$J_G = \left\{ \langle \overline{e} \rangle, \, \phi \langle \overline{e} \rangle, \, \phi^2 \langle \overline{e} \rangle, \, \dots, \, \phi^{\mu-1} \langle \overline{e} \rangle \right\}, \tag{4}$$

где $\langle \overline{e} \rangle$ — Γ -орбита, порожденная вектором-ошибкой e из пространства ошибок E_n ; $\mu = m$ или μ делит m. Формула (4) определяет всю G-орбиту одним вектором-ошибкой, который называют ее образующим, и потому используют обозначение $J_G = \langle e \rangle_G$ [2].

Циклотомическая подстановка замечательна следующими свойствами: если $S(\overline{e}) = (s_1, s_2)$, то

$$S(\varphi(\overline{e})) = (s_1^2, s_2^2), (N(S(\overline{e})))^2 = N(S(\varphi(\overline{e}))).$$
 (5)

Определение. Единственный неприводимый полином

$$Irr(N_1, x) = (x - N_1)(x - N_1^2) \cdots (x - N_1^{2^{\mu - 1}}), \tag{6}$$

множество корней которого совпадает с множеством норм в коде C_R Γ -орбит, составляющих данную G-орбиту, называется полиномиальным инвариантом этой G-орбиты и обозначается $p(<e>_G,x)$ или $p(N_1,x)$ [6].

Важно отметить, что степень полинома $p(<e>_G,x)$ совпадает с количеством Γ -орбит в соответствующей G-орбите. В частности, для простых значений m степень этого полинома равна 1 или, что чаще всего, m.

Конечно, $p(\langle e \rangle_G, x)$ должен храниться не в форме (6), а в стандартной полиномиальной форме $x^{\mu} + c_{\mu-1}x^{\mu-1} + ... + c_1x + c_0$ с коэффициентами из GF(2) или вовсе в виде двоичного вектора

 $(1, c_{\mu-1}, ..., c_1, c_0)$. Для этого следует раскрыть скобки в формуле (6) и привести подобные. Полученные в результате коэффициенты c_i , $0 \le i < \mu$, будучи симметрическими полиномами от корней полинома в силу теоремы Виета, должны быть инвариантными относительно автоморфизма Фробениуса поля Галуа $GF(2^m)$ и, следовательно, принадлежать его минимальному подполю GF(2).

Каждый элемент γ поля $GF\left(2^m\right)$ является алгебраическим над подполем $GF\left(2\right)$, т. е. есть корень некоторого единственного неприводимого полинома $\operatorname{Irr}(\gamma, x) \in \mathbb{Z}/2\mathbb{Z}[x]$. Если γ не принадлежит никакому подполю поля $GF\left(2^m\right)$, то deg $\operatorname{Irr}(\gamma, x) = m$, в противном случае deg $\operatorname{Irr}(\gamma, x) = \mu$ — делитель числа m (детали в [8] или [9]). Чтобы конкретная работа с полиномиальными инвариантами не создавала проблем со временем, не замедляла работу декодера, следует заранее, при построении конечного поля $GF\left(2^m\right)$, для каждого элемента γ найти его полином $\operatorname{Irr}(\gamma, x) \in GF\left(2\right)[x]$ и хранить эту пару в памяти в единой связке: $\gamma \leftrightarrow \operatorname{Irr}(\gamma, x)$.

В непримитивных кодах, как и в случае Γ -орбит, один полиномиальный инвариант могут иметь до z различных G-орбит. Одиночные ошибки образуют одну G-орбиту из одной Γ -орбиты с полиномиальным инвариантом x+1. Двойные ошибки делятся, как правило, на полные G-орбиты по m Γ -орбит в каждой, но если число Γ -орбит $\frac{1}{n}C_n^2=\frac{n-1}{2}$ не делится на m, то среди G-орбит обязательно найдутся неполные, но содержащие более одной Γ -орбиты. У G-орбит тройных ошибок трудно указать какиелибо общие закономерности.

Пример 2. Над полем GF(2) имеется 186 различных неприводимых полиномов 11-й степени, по которым распределяются в качестве корней 2046 элементов поля $GF(2^{11})$ (два оставшихся принадлежат подполю GF(2)). В развитие примера 1 заметим, что в коде C_R^+ длиной 89 векторы двойных ошибок образуют 4 полные G-орбиты с уникальными полиномиальными инвариантами:

Полином	Образующая	Синдром образующей	Норма образующей
$1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^8 + x^9 + x^{11}$	(1, 4)	$\left(\alpha^{1534},\alpha^{1465}\right)$	α^{952}
$1 + x^3 + x^5 + x^6 + x^7 + x^{10} + x^{11}$	(1, 2)	$\left(\alpha^{527},\alpha^{504}\right)$	α^{1031}
$1 + x^2 + x^4 + x^5 + x^6 + x^7 + x^8 + x^{10} + x^{11}$	(1, 6)	$\left(\alpha^{397},\alpha^{282}\right)$	α^{679}
$1 + x^2 + x^3 + x^4 + x^6 + x^7 + x^9 + x^{10} + x^{11}$	(1, 14)	$\left(\alpha^{1041},\alpha^{742}\right)$	α^{1783}

В свою очередь, 1276 Г-орбит тройных ошибок делятся на 116 полных G-орбит, которым соответствуют 53 полиномиальных инварианта. Из них 3 инварианта соответствуют в точности одной G-орбите, 43 полинома – сразу двум G-орбитам, 1 полином – трем G-орбитам и 6 – четырем. Отметим также, что два инвариантных полинома для тройных ошибок совпадают с таковым для двойных.

7. Двухступенчатая процедура полиномиально-норменной коррекции ошибок реверсивными кодами $C_{R}^{^{+}}$

Для работы декодера на основе полиномиальных инвариантов необходимо хранить в памяти ряд списков: $PG = \left\{ p(<e_1>_G, x), \ p(<e_2>_G, x), \dots, \ p(<e_s>_G, x) \right\}$ — список попарно различных полиномиальных инвариантов всех G-орбит векторов-ошибок весом 2 и 3; для каждого целого i ($1 \le i \le s$) — список $N_i\Gamma$ из μ ($\mu = m$ или μ — делитель m) попарно различных норм N_{ij} ($1 \le j \le \mu$) Γ -орбит с полиномиальным инвариантом $p(<e_i>_G, x)$; для каждой нормы N_{ij} — список $N_{ij}OS = \left\{ <\overline{e}_{ij1}>, \ S\left(\overline{e}_{ij1}\right); <\overline{e}_{ij2}>, \ S\left(\overline{e}_{ij2}\right); \dots; <\overline{e}_{ij\varsigma}>, \ S\left(\overline{e}_{ij\varsigma}\right) \right\}$ образующих Γ -орбит и синдромов образующих с данной нормой N_{ij} .

образующих Γ -орбит и синдромов образующих с данной нормой N_{ij} . Представим алгоритм исправления ошибки кодом C_R с проверочной матрицей (1). Пусть принято некоторое сообщение l. Вычисляем его синдром ошибки $Hl^T = S(l)$. Если S(l) = 0, то сообщение не содержит ошибок. Алгоритм заканчивает работу. В противном случае переходим на выполнение следующих ниже шагов.

- 1. Пусть $S(l) \neq 0$. Тогда находим норму синдрома $S(l) = (s_1, s_2)$ по формуле $N_0 = N(S(l)) = s_1 s_2$. Если $N_0 = 1$ и $s_1 = s_2^{-1} = \beta^{t-1}$, то ошибка e_l однократная на t-й позиции и можно переходить к шагу 6.
- 2. Иначе по отмеченной выше связке элементов поля с их неприводимыми полиномами $\gamma \leftrightarrow \operatorname{Irr}(\gamma, x)$ определяем полиномиальный инвариант $p(N_0, x)$ и сравниваем его со списком PG. Пусть $p(N_0, x) = p(\langle e_i \rangle_G, x)$ для некоторого целого i ($1 \le i \le s$). Это означает, что норма N_0 принадлежит короткому списку $N_i\Gamma$.
- 3. Сравниваем N_0 с этим списком, находим $N_0 = N_{ij_0} \in N_i \Gamma$. Следовательно, искомая вектор-ошибка находится среди ς Γ -орбит с нормой N_{ij_0} .
 - 4. Для каждого целого k ($1 \le k \le \varsigma$) и вектора \overline{e}_{ij_0k} из списка $N_{ij_0}OS = \left\{ <\overline{e}_{ij_01}>,\ S\left(\overline{e}_{ij_01}\right) = \left(s_1^1,\ s_2^1\right); <\overline{e}_{ij_2}>, \right\}$

$$S\left(\overline{e}_{j_02}\right) = \left(s_1^2, \ s_2^2\right); \ \ldots; <\overline{e}_{j_0\varsigma}>, \ S\left(\overline{e}_{j_0\varsigma}\right) = \left(s_1^\varsigma, \ s_2^\varsigma\right) \right\} \text{ вычисляем величину } \tau_k = \frac{\deg\left(s_1\right) - \deg\left(s_1^k\right)}{z}, \ \text{если } s_1 \neq 0,$$

и величину $\tau_k' = \frac{\deg\left(s_2^k\right) - \deg\left(s_2\right)}{z}$, если $s_1 = 0$. Фиксируем то единственное, в силу сказанного выше, значение $k = \lambda$, для которого τ_{λ} или τ_{λ}' является целым числом.

- 5. Вычисляем искомую вектор-ошибку $e_l = \mathbf{\sigma}^{\tau(\mathrm{mod}\, n)} \Big(\overline{e}_{ij_0\lambda} \Big)$ в сообщении l.
- 6. Получаем верное сообщение $c = l + e_l$.

Пример 3. Работу декодера проследим на примере реверсивного кода длиной 89 над полем $GF(2^{11})$. Декодер данного кода содержит в себе, помимо проверочной матрицы, список PG из 57 полиномов и список SNO Γ -орбит, отсортированный по G-орбитам. Всего пространство ошибок содержит 121 G-орбиту: 4 орбиты двукратных ошибок, 116 — ошибок весом 3, а также 1 орбиту однократных ошибок.

Пусть ИКС приняла следующее сообщение:

- 1. Вычисляем норму синдрома $N_0 = s_1 s_2 = \alpha^{1475}$. По связке элемент поля полином определяем $p(N_0, x) = 1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^8 + x^9 + x^{11}$.
- 2. В списке PG находим полином, равный найденному $p(N_0, x)$, $p(x) = 1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^8 + x^9 + x^{11}$.

Сразу получаем и список норм, соответствующий инвариантному полиному: $N_i\Gamma = \{\alpha^{952}, \alpha^{476}, \alpha^{238}, \alpha^{119}, \alpha^{1083}, \alpha^{1565}, \alpha^{1806}, \alpha^{903}, \alpha^{1475}, \alpha^{1761}, \alpha^{1904}\}$.

- 3. В списке $N_i\Gamma$ легко отыщем нашу норму, а значит, искомая ошибка находится среди элементов Γ -орбит с нормой N_0 . Переходим к списку $N_{ij_0}OS = \left\{<(1,25)>, \left\{\alpha^{2037}, \alpha^{1485}\right\}; <(1,2,28)>, \left\{\alpha^{606}, \alpha^{869}\right\}; <(1,27,28)>, \left\{\alpha^{1490}, \alpha^{2032}\right\}\right\}$. Отметим, что данной норме соответствуют Γ -орбиты двойных и тройных ошибок одновременно.
 - 4. Находим $\tau_k = \frac{\deg(s_1) \deg(s_1^k)}{z}$, где $z = \frac{2^{11} 1}{89} = 23$. Таким образом, имеем

$$\tau_1 = \frac{1687 - 2037}{23} = \frac{-350}{23}, \ \tau_2 = \frac{1687 - 606}{23} = 47, \ \tau_3 = \frac{1687 - 1490}{23} = \frac{197}{23}.$$

Фиксируем $\tau_2 = 47$, так как оно является целым числом.

- 5. Вычисляем искомый вектор-ошибку $e_l = \sigma^{47 \pmod{n}} (1, 2, 28) = (48, 49, 75)$. Выпишем вектор e_l в полной форме:
 - - 6. Получаем верное сообщение $c = l + e_l$:

8. Заключение

В работе развита теория полиномиальных инвариантов G-орбит ошибок на класс реверсивных кодов, как правило непримитивных, корректирующие возможности которых выходят за рамки конструктивных возможностей. Свойства этих инвариантов позволяют предложить усеченный двухступенчатый полиномиально-норменный метод декодирования ошибок реверсивными кодами. Классические синдромные методы коррекции ошибок так или иначе преодолевают полный перебор списка исправляемых ошибок, что неизбежно приводит к «проблеме селектора». Норменные методы на порядок сокращают этот перебор, ибо ему подвергаются нормы Γ -орбит декодируемых ошибок (их инварианты). Когда идентифицирована Γ -орбита, содержащая искомую ошибку, дальнейший ее поиск осуществляется детерминированными вычислениями с синдромами. Полиномиально-норменный метод выполняет еще более усеченный поиск в списке полиномиальных инвариантов G-орбит ошибок корректируемой совокупности с последующим минимальным поиском нужной Γ -орбиты в узком списке G-орбит с найденным полиномиальным инвариантом. Предлагаемый метод коррекции ошибок, несомненно, должен найти свои приложения в практике.

Библиографические ссылки

- 1. Мак-Вильямс ФДж, Слоэн Н. Теория кодов, исправляющих ошибки. Москва: Связь; 1979.
- 2. Конопелько ВК, Липницкий ВА. Теория норм синдромов и перестановочное декодирование помехоустойчивых кодов. Москва: Едиториал УРСС; 2004.
- 3. Конопелько ВК, Липницкий ВА. Норменное декодирование помехоустойчивых кодов и алгебраические уравнения. Минск: Издательский центр БГУ; 2007.
 - 4. Липницкий ВА. Теория норм синдромов. Минск: БГУИР; 2010.
- 5. Липницкий ВА, Кушнеров АВ. Некоторые свойства реверсивных помехоустойчивых кодов. В: *Технологии информати-зации и управления. Выпуск 3. В 2 книгах. Книга 1.* Кадан АМ, Свирский ЕА, редакторы. Минск: РИВШ; 2017. с. 47–54.
- 6. Липницкий ВА, Кушнеров АВ. Свойства и декодирование реверсивных кодов с конструктивным расстоянием 5. Веснік Магілёўскага дзяржаўнага ўніверсітэта імя А. А. Куляшова. Серыя В. 2016;2:30—44.
- 7. Липницкий ВА, Середа ЕВ. Полиномиальные инварианты G-орбит ошибок БЧХ-кодов и их применение. Доклады БГУИР. 2017;5(107):62–69.
- 8. Липницкий ВА. Современная прикладная алгебра. Математические основы защиты информации от помех и несанкционированного доступа. Минск: БГУИР; 2005. 88 с.
 - 9. Лиддл Р, Нидеррайтер Г. Конечные поля. Москва: Мир; 1988.

References

- 1. MacWilliams FJ, Sloane N. *Teoriya kodov, ispravlyayushchikh oshibki* [The Theory of Error-Correcting Codes]. Moscow: Svyaz; 1979. Russian.
- 2. Konopel'ko VK, Lipnitskii VA. *Teoriya norm sindromov i perestanovochnoe dekodirovanie pomekhoustoichivykh kodov* [Theory of syndrome norms and permutation decoding of error-correcting codes]. Moscow: Editorial URSS; 2004. Russian.
- 3. Konopel'ko VK, Lipnitskii VA. *Normennoe dekodirovanie pomekhoustoichivykh kodov i algebraicheskie uravneniya* [Norm decoding of error-correcting codes and algebraic equations]. Minsk: Izdatel'skii tsentr BGU; 2007. Russian.
 - 4. Lipnitskii VA. Teoriya norm sindromov [Theory of syndrome norms]. Minsk: BGUIR; 2010. Russian.
- 5. Lipnitskii VA, Kushnerov AV. [Some properties of reverse error-correcting codes]. In: *Tekhnologii informatizatsii i upravleniya. Vypusk 3. V 2 knigakh. Kniga 1.* Kadan AM, Svirskii EA, editors. Minsk: RIVSh; 2017. p. 47–54. Russian.
- 6. Lipnitskii VA, Kushnerov AV. [Properties and decoding of reverse codes with a code distance of 5]. Vesnik Magilewskaga dzjarzhawnaga wniversitjeta imja A. A. Kuljashova. Seryja V. 2016;2:30–44. Russian.
- 7. Lipnitskii VA, Sereda EV. [Polynomial invariants of *G*-orbits of BCH-code errors and their application]. *Doklady BGUIR*. 2017; 5(107):62–69. Russian.
- 8. Lipnitskii VA. Sovremennaya prikladnaya algebra. Matematicheskie osnovy zashchity informatsii ot pomekh i nesanktsionirovannogo dostupa [Modern applied algebra. Mathematical foundations of information protection from interference and unauthorized access]. Minsk: BGUIR; 2005. 88 p. Russian.
 - 9. Liddle R, Niederreiter G. *Introduction to finite fields and their applications*. New York: Cambridge University Press; 1986. Russian edition: *Konechnye polya*. Moscow: Mir; 1988.

Статья поступила в редколлегию 23.03.2018. Received by editorial board 23.03.2018.