- Graphene oxide nanosheet with high proton conductivity / M.R. Karim [et al.], K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, S. Hayami // J. Am. Chem. Soc. 2013. V. 135, № 22. P. 8097–8100.
- Enhanced proton conductivity of graphene oxide/nafion composite material in humidity sensing application / S. Ghosh [et al.], R. Ghosh, P.K. Guha, T.K. Bhattacharyya // IEEE Trans. Nanotechnol. 2016. V. 15, № 5. P. 782–790.
- 32. Tunable graphene oxide proton/electron mixed conductor that functions at room temperature / K. Hatakeyama [et al.], H. Tateishi, T. Taniguchi, M. Koinuma, T. Kida, S. Hayami, H. Yokoi, Y. Matsumoto // Chem. Mater. 2014. V. 26, № 19. P. 5598-5604.
- Agmon, N. The Grotthuss mechanism / N. Agmon // Chem. Phys. Lett. 1995. V. 244, № 5-6. P. 456–462.

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОЛЕВЫХ ТРАНЗИСТОРОВ И РЕЗОНАНСНО-ТУННЕЛЬНЫХ ДИОДОВ НА ОСНОВЕ ГРАФЕНА

И. И. Абрамов, В. А. Лабунов, Н. В. Коломейцева, И. А. Романова, И. Ю. Щербакова

Белорусский государственный университет информатики и радиоэлектроники, П. Бровки, 6, 220013 Минск, Беларусь, e-mail: nanodev@bsuir.edu.by

В докладе описаны комбинированные модели полевых графеновых транзисторов (ПГТ) и резонансно-туннельных диодов (РТД) на основе графена. С их помощью исследованы вольт-амперные характеристики (ВАХ) приборов в различных режимах работы.

Ключевые слова: графен; комбинированные модели; полевой транзистор; моделирование; резонансно-туннельный диод; вольт-амперная характеристика.

THEORETICAL STUDIES OF FIELD-EFFECT TRANSISTORS AND RESONANT TUNNELING DIODES BASED ON GRAPHENE

I. I. Abramov, V. A. Labunov, N. V. Kolomejtseva, I. A. Romanova, I. Y. Shcherbakova

Belarusian State University of Informatics and Radioelectronics, P. Brovki str. 6, 220013 Minsk, Belarus, Corresponding author: I. I. Abramov (nanodev@bsuir.edu.by)

In the paper the combined models of graphene field-effect transistors and resonant tunneling diodes based on graphene are presented. IV-characteristics were investigated with the use of the proposed models in different operating mode.

Key words: graphene; combined models; field-effect transistor; simulation; resonant tunneling diode; IV-characteristic.

введение

Уникальные свойства графена позволяют создавать приборы с высокими показателями быстродействия. К таким приборным структурам, в частности, относятся ПГТ и РТД на графене [1]. Для прогнозирования электрических характеристик ПГТ и РТД необходимы модели, адекватно описывающие их работу в различных режимах функционирования.

В данной работе описаны разработанные комбинированные модели ПГТ на основе однослойного графена и РТД на основе двухслойного графена. Также в докладе представлены результаты исследования электрических характеристик исследуемых приборов.

модели

Предложенная модель графенового ПГТ является квантовой диффузионнодрейфовой моделью и относится к классу комбинированных [2]. В ней применен самосогласованный расчет электростатического потенциала. Моделирование выходных характеристик на основе предложенной модели описано в работах [3,4]. В докладе рассмотрен более сложный случай моделирования передаточных характеристик. Особенностью модифицированной модели является применение метода дихотомии для учета влияния сопротивлений стока и истока.

Для проведения расчетов характеристик графеновых РТД использовалась разработанная комбинированная самосогласованная модель [5, 6] на основе формализма волновых функций. В модели выделяются три вида областей: омические контакты, протяженные приконтактные области и активная область. В активной области, к которой относятся потенциальные барьеры и квантовая яма, самосогласованно решаются уравнения Шредингера и Пуассона. В приконтактных областях используется больцмановская аппроксимация статистики Ферми-Дирака. Таким образом, при описании РТД применяются полуклассический и квантовомеханический подходы.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

С использованием предложенной комбинированной самосогласованной модели промоделированы передаточные характеристики двухзатворного ПГТ на однослойном графене.

На рис. 1 проиллюстрировано влияние ширины канала на передаточные вольтамперные характеристики ПГТ на однослойном графене. Для удобства сравнения с экспериментальными данными на графике показана зависимость плотности тока стока от напряжения на верхнем затворе. Кривая 1 соответствует ширине канала 25 мкм (согласно экспериментальным данным работы [7] (кривая 3)), а кривая 2 – ширине канала 5 мкм. Точке Дирака на кривой соответствует минимум плотности тока стока. Как видно из рисунка, изменение передаточных характеристик более заметно в области дырочной проводимости (слева от точки Дирака), чем в области электронной проводимости (справа от точки Дирака). Это можно объяснить более высокими значениями подвижности дырок в однослойном графене, по сравнению с подвижностью электронов.

Рисунок 1. – ВАХ ПГТ

Рисунок 2. – ВАХ РТД

Проведены исследования характеристик двухбарьерного РТД на основе двухслойного графена на подложке гексагонального нитрида бора (*h*-BN) для различных величин высоты потенциальных барьеров (см. рис. 2).

Моделирование проводилось для РТД, в котором ширина квантовой ямы – 3,5 нм, ширины потенциальных барьеров – 1,2 нм, ширины приконтактных областей – 20 нм, концентрация примеси в приконтактных областях $N_d = 7,5 \cdot 10^{16}$ м⁻². Высоты потенциальных барьеров задавались в диапазоне значений 3,0–3,3 эВ. На рис. 2 представлены результаты моделирования ВАХ (точнее зависимости плотности тока от напряжения) РТД при температуре 300 К. Кривая 1 соответствует высоте барьеров 3,157 эВ (согласно данным работы [8]), кривая 2 – высоте барьеров 3,0 эВ, а кривая 3 – 3,3 эВ.

Из рис. 2 следует, что увеличение высоты потенциальных барьеров приводит к небольшому уменьшению значений плотностей пиковых токов. В то же время плотности токов долины изменяются несущественно. Это согласуется с результатами, полученными для РТД на основе графена на подложке диоксида кремния.

ЗАКЛЮЧЕНИЕ

Исследованы передаточные характеристики ПГТ на однослойном графене в зависимости от ширины канала. В разработанной модели использован оптимизационный метод дихотомии для учета влияния падения напряжений на сопротивлениях стока и истока. Также получены зависимости плотностей токов от напряжения для РТД на основе двухслойного графена на подложке *h*-BN для различных высот потенциальных барьеров.

Программы, реализующие разработанные модели ПГТ и РТД на графене, включены в систему моделирования наноэлектронных приборных структур и устройств NANODEV [9, 10].

Работы проведены в рамках проектов Государственных программ научных исследований Республики Беларусь "Конвергенция" и "Нанотех".

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- Ferrari A.C., Bonaccorso F., Fal'ko V., Novoselov K.S. et al.SScience and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems // Nanoscale. – 2015. – Vol. 7. – P. 4598–4810.
- Абрамов И. И. Основы моделирования элементов микро- и наноэлектроники. Монография. Saarbrücken: LAP LAMBERT Academic Publishing, 2016. – 444 с.
- Абрамов И.И., Коломейцева Н.В., Лабунов В.А., Романова И.А. Моделирование полевых графеновых транзисторов с одним и двумя затворами // Нано- и микросистемная техника. – 2017. – № 12. – С. 714-721.
- Abramov I. I., Labunov V. A., Kolomejtseva N.V., Romanova I. A. Simulation of field-effect transistors and resonant tunneling diodes based on graphene // Proc. of SPIE. – 2016. – Vol. 10224. – P. 102240V-1-10.
- 5. Абрамов И.И., Коломейцева Н.В., Лабунов В.А., Романова И.А. Моделирование резонанснотуннельных диодов на основе графена на подложках различного типа // Нано- и микросистемная техника. – 2015. – № 11. – С. 3–10.
- 6. Абрамов И.И., Коломейцева Н.В., Лабунов В.А., Романова И.А. Моделирование резонанснотуннельных приборных структур на основе углеродных наноматериалов // Нанотехнологии, разработка, применение: XXI век. – 2017. – №3, Т. 9. – С. 3–11.
- Wang H., Hsu A., Antoniadis D.A., Palacios T. Compact virtual-source current-voltage model for top- and back-gated graphene field-effect transistors // IEEE Trans. Electron. Dev. – 2011. – Vol. 58, No. 5. – P. 1523–1533.
- Fiori G., Betti A., Bruzzone S., D'Amico P., Iannaccone G. Nanodevices in Flatland: Twodimensional graphene-based transistors with high Ion/Ioff ratio // 2011 IEEE International Electron Devices Meeting (IEDM). – 2011. – P. 11.4.1–11.4.4.
- 9. Абрамов И.И., Гончаренко И.А., Игнатенко С.А., Королев А.В., Новик Е.Г., Рогачев А.И. Система моделирования наноэлектронных приборов NANODEV // Микроэлектроника. 2003. Т. 32, № 2. С. 124–133.
- Abramov I.I., Baranoff A.L., Goncharenko I.A., Kolomejtseva N.V., Bely Y.L., Shcherbakova I.Y. A nanoelectronic device simulation software system NANODEV: New opportunities // Proc. of SPIE. – 2010. – Vol. 7521. – P. 75211E-1-11.

ВЗАИМОДЕЙСТВИЕ ИНДОТРИКАРБОЦИАНИНОВОГО КРАСИТЕЛЯ С НАНОАЛМАЗАМИ ДЕТОНАЦИОННОГО СИНТЕЗА В ВОДНЫХ СРЕДАХ

Н. В. Белько¹, М. П. Самцов², Г. А. Гусаков², А. А. Луговский², В. А. Пархоменко¹, Е. С. Воропай¹

¹⁾ Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, *e-mail: nikita.belko@gmail.com*,

²⁾ Институт прикладных физических проблем им. А.Н. Севченко Белорусского государственного университета, ул. Курчатова, 7, 220045 Минск, Беларусь samtsov@bsu.by

Исследованы процессы комплексообразования индотрикарбоцианинового красителя с ультрадисперсными алмазами детонационного синтеза в водных средах. Установлено, что эффективность связывания красителя с наноалмазами зависит от типа их термической обработки. Показано, что более эффективно краситель взаимодействует с ультрадисперсными алмазами, отожженными в вакууме при 750 °C, по сравнению с образцами, отожженными в вакууме при 500 °C или в атмосфере воздуха