#### БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Terry, E. and Jack Saltich Schottky barrier heights of nickel-platinum silicide contacts on n-type Si Appl. Phys. Lett. 28, 229 (1976).
- Hoummada, K. Effect of Pt addition on Ni silicide formation at low temperature: Growth, redistribution, and solubility/K. Hoummada [et al.] // J. Appl. Phys. –2009. –V. 106– P. 06351/1–06351/9.
- Mattheis, R., Hesse, D. Reinvestigation of Ni<sub>2</sub>Si Thin Film Growth on Si / R.Mattheis, D.Hesse // Phys. Stat. Sol. (a) 109, 217 (1988).
- Federico, P., Khalid, D., M., Hoummada, M., Bertoglio, T.M., Luca, A., Magali Gregoire, M., Marc, J. Direct epitaxial growth of h-Ni2Si by reaction of a thin Ni (10 at.%Pt) film with Si (100) substrate / P. Federico [et al.] // Scripta Materialia.- 78–79.– (2014).– P. 9–12.

## ФОРМИРОВАНИЕ ПОЛЯРОНОВ В СУБСТЕХИОМЕТРИЧЕСКИХ ОКСИДАХ НИОБИЯ

### Д. Б. Мигас, А. Г. Черных, А. Б. Филонов

Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки, 6, 220013 Минск, Беларусь, e-mail: migas@bsuir.by

Учет кулоновского взаимодействия сильно коррелированных электронов при расчете энергетического спектра различных полиморфных фаз субстехиометрического оксида ниобия (Nb<sub>12</sub>O<sub>29</sub>) первопринципными методами позволяет предсказать появление поляронов в этой структуре. Возникновение поляронов также определяет магнитные и зарядовые свойства Nb<sub>12</sub>O<sub>29</sub>.

Ключевые слова: оксиды ниобия; поляроны; кулоновское взаимодействие.

## POLARON FORMATION IN SUBSTOICHIOMITRIC NIOBIUM OXIDES

#### D. B. Migas, A. G. Chernyh, A. B. Filonov

Belarusian State University of Informatics and Radioelectronics, P. Brovka str. 6, 220013 Minsk, Belarus, Corresponding author: D. B. Migas (migas@bsuir.by)

The Coulomb interaction of highly correlated electrons within *ab initio* technique allows predicting polaron formation in substoichiometric niobium oxides ( $Nb_{12}O_{29}$ ) when calculating their electronic properties. The appearance of polarons also defines magnetic and charge ordering in  $Nb_{12}O_{29}$ .

Key words: niobium oxides; polarons; Coulomb interaction.

#### введение

Перераспределение и локализация заряда в оксидах представляет собой очень важный для практического применения эффект, механизмы возникновения которого еще до конца не изучены, что вызывает необходимость его детального теоретического исследования. Локализация заряда в твердом теле может произойти, когда имеет место значительное взаимодействие заряд-решетка, приводящее к локализации заряда в результате локального искажения решетки. Подобное комплексное образование локализованного заряда с искажением решетки часто называют поляронами [1]. Эти квазичастицы возникают в большинстве оксидов, а также в органических соединениях. Интерес к поляронам и, особенно, к их подвижности в оксидах, вызван широким спектром практического использования оксидов в ионно-литиевых батареях [2], топливных элементах [3,4], сверхпроводниках [5] и в качестве катализаторов [6].

Недавно установлено, что для корректного моделирования электронных и магнитных свойств различных оксидов, имеющих поляроны, с помощью методов из первых принципов необходимо использовать приближения, которые выходят за пределы стандартного приближения локальной плотности и учитывают эффекты сильных корреляций: учет кулоновского взаимодействия сильно коррелированных электронов в DFT+U, поправки на самодействие, гибридные функционалы, динамическая теория среднего поля [7]. Обычное приближение локальной плотности не способно воспроизводить локализацию заряда, вызванную локальным искажением решетки.

Различные фазы высших оксидов ниобия (Nb<sub>2</sub>O<sub>5</sub>) являются широкозонными полупроводниками, так как все атомы ниобия представляют собой  $Nb^{5+}$  катионы и они находятся в  $d^0$  состоянии. Также существуют субстехиометрические оксиды, а именно Nb<sub>12</sub>O<sub>29</sub> (NbO<sub>2417</sub>), которые имеют кристаллическую структуру, отличную соответственно от Nb<sub>2</sub>O<sub>5</sub>, и обладают противоречивыми на первый взгляд свойствами. В случае Nb<sub>12</sub>O<sub>29</sub> показано, что это соединение является антиферромагнетиком с температурой Нееля около 12 К [8-10] и в тоже самое время обладает температурной зависимостью удельного сопротивления металлического типа в диапазоне от 300 до 0,3K [8, 9] с большой концентрацией свободных носителей заряда – около  $1,8 \times 10^{21}$ см<sup>-3</sup> [11]. С другой стороны, можно ожидать появления диэлектрических свойств, так как формула Nb<sub>12</sub>O<sub>29</sub> может быть записана как Nb<sub>2</sub><sup>4+</sup>Nb<sub>10</sub><sup>5+</sup>O<sub>29</sub><sup>2-</sup>, где соответственно два и десять катионов ниобия находятся в  $d^1$  и  $d^0$  состояниях, чтобы сбалансировать перераспределение заряда для двадцати девяти анионов кислорода. Эта ионная модель предполагает наличие поляронного типа проводимости [12, 13], однако в других экспериментальных работах этот факт не был подтвержден [8–10]. Возможное объяснение сосуществования большой концентрации свободных носителей заряда и антиферромагнитного типа упорядочения заключается в наличии как локализированных, так и делокализированных электронов, происходящих от катионов ниобия в  $d^{1}$  и  $d^0$  состояниях [8, 9]. Более того, проведенные оценки эффективного магнитного момента [8-10, 14] и концентрации свободных носителей заряда [11] поддерживают это утверждение, также указывая на примерно одинаковое количество локализированных и делокализированных электронов. Теоретически эта возможность не подтверждена и только делокализованные носители заряда были обнаружены в Nb<sub>12</sub>O<sub>29</sub> [15, 16], что, естественно, не позволяет дать целостное представление о свойствах этого субстехиометрического оксида ниобия

Целью данной работы является теоретическое исследование (методами из первых принципов с учетом кулоновского взаимодействия сильно коррелированных электронов (DFT+U) и гибридного потенциала) перераспределения и локализации заряда, обусловленных формированием поляронов в результате локального искажения решетки, в субстехиометрических оксидах ниобия (Nb<sub>12</sub>O<sub>29</sub>).

#### МАТЕРИАЛЫ И МЕТОДЫ

Из литературных данных установлено, что три субстехиометрические фазы  $Nb_{12}O_{29}$  (с пространственными группами C2/m, C2/c и C1m) характеризуются моноклинной структурой, а еще одна – четвертая (с пространственной группой *Cmma*) – имеет орторомбическую структуру.

Для проведения полной оптимизации кристаллической структуры с последующим расчетом плотности электронных состояний Nb<sub>12</sub>O<sub>29</sub> был применен первопринципный метод псевдопотенциала с базисным набором плоских волн. Метод реализован в виде пакета программ VASP [17, 18]. Учет обмена и корреляции проводился путем использования обобщенного градиентного приближения (GGA) [19]. В процессе расчетов 2s и 4p состояния для кислорода, а также 5p, 6s и 5d состояния для ниобия и вольфрама рассматривались как валентные. Интегрирование по зоне Бриллюэна проводится с помощью линейного метода тетраэдров на сетках с различным набором k-точек. Минимизация полной энергии системы была получена путем вычисления сил Хеллмана-Фейнмана и тензора напряжений. В оптимизации параметров решетки и релаксации атомных позиций использовался сопряженный метод градиента. Сходимость по полной энергии в элементарной ячейке для всех рассматриваемых фаз была лучше, чем 1 мэВ/атом, используя ограничение энергии до 450 эВ. Использовалась сетка 7×7×7 k-точек. Также использовались GGA+U подход для учета *d*-*d* кулоновского взаимодействия электронов атомов металла [20] и гибридный функционал [21-25] со стандартным набором параметров для экранирования и смешивания Хартри-Фока, так как он позволяет более точное описание обменнокорреляционного взаимодействия по сравнению с обычным GGA приближением.

# РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

После полной структурной оптимизации соответствующие параметры решетки различных фаз Nb<sub>12</sub>O<sub>29</sub> оказываются очень близкими к значениям, определенным экспериментально, независимо от использованного функционала. Сравнение полных энергий для ферромагнитного состояния полиморфных фаз Nb<sub>12</sub>O<sub>29</sub> не выявило наиболее стабильную конфигурацию, так как разница по энергиям (> 0,1 эВ на формульную единицу) очень мала. В то время как разница по энергии между немагнитным и ферромагнитным состояниями указывает, что второе из них является основным состоянием (разница по энергии составляет 0,6 эВ на формульную единицу). Учет спиновой поляризации приводит к появлению магнитного момента  $m \sim 0.7 \ \mu_{\rm B}$ на формульную единицу, а перераспределение заряда между атомами указывает, что атомы кислорода принимают 1.0-1.2e<sup>-</sup>, тогда как атомы ниобия отдают 2.6-2.7e<sup>-</sup> (приближение GGA и гибридного функционала). Очевидно, что в такой ситуации невозможно определить  $d^0$  и  $d^1$  состояния катионов ниобия. В случае GGA+U приближения установлено, что существует некоторые атомы ниобия, имеющие в качестве первых соседей на один атом кислорода меньше, чем для большинства других атомов ниобия. Это приводит к уменьшению числа анионов кислорода, которые могут эффективно принимать заряд, и к появлению существенной разницы в перераспределении зарядов между атомами ниобия: 2.6е для большинства и 2.9-3.0е, где сформировался полярон. Таким образом, возможно разделение атомов ниобия в  $d^1$  и  $d^0$  состояниях. Это становиться заметным при увеличении *U*. При *U* = 6 эВ магнитный момент достигает значений 2.0  $\mu_B$  на формульную единицу.

Рассчитанные плотности электронных состояний Nb<sub>12</sub>O<sub>29</sub>, представленные на рисунке, обладают энергетической щелью около 2 эВ между валентной зоной и зоной проводимости, хотя уровень Ферми пересекает несколько зон у дна зоны проводимости. Это характерно для GGA, гибридного функционала и в случае GGA+U приближения при U < 5,5 эВ. В случае учета кулоновского взаимодействия сильно коррелированных *d*-электронов атомов ниобия (GGA+U) происходит сдвиг по энергии между пиками плотности электронных состояний вблизи уровня Ферми для различных направлений спина, который прогрессивно увеличивается с увеличением значения *U* для Nb-*d* электронов (рисунок).





Это в итоге приводит к появлению полупроводниковых свойств, из-за отщепления нескольких зон от дна зоны проводимости и попаданию уровня Ферми в запрещенную зону. При U = 5,5 эВ появляются локализованные состояния в запрещенной зоне, причем при U = 7.0 они уже перекрываются с валентной зоной. Анализ орбитальных состояний в отщепленной зоне показал, что основной вклад вносят d электроны атомов ниобия, находящихся в d<sup>1</sup> состоянии (у которых уменьшилось количество первых соседей, и они же обладают максимальным магнитным моментом и определяют магнитные свойства Nb<sub>12</sub>O<sub>29</sub>. Практически идентичные зависимости плотности электронных состояний от энергии, а также наличие атомов ниобия в d<sup>1</sup> и d<sup>0</sup> состояниях при GGA+U с U > 5,5 эВ, характерны для различных полиморфных фаз Nb<sub>12</sub>O<sub>29</sub>.

#### ЗАКЛЮЧЕНИЕ

Результаты наших квантово-механических расчетов, используя различные приближения, указывают на практически одинаковые значения полных энергий для различных полиморфных модификаций Nb<sub>12</sub>O<sub>29</sub>. Более того, обнаружено, что их свойства не зависят от кристаллической структуры. Используя GGA приближение или гибридный функционал, можно получить значение магнитного момента [16], которое близко к экспериментально определенному [8-10,14], однако с помощью этого приближения не возможно описывать локализированные состояния, а надо использовать учет кулоновского взаимодействия сильно коррелированных *d* электронов атомов ниобия. В зависимости от значения U для d состояний атомов ниобия возможно получения ферромагнитного основного состояния Nb<sub>12</sub>O<sub>29</sub> как с локализованными, так и с делокализованными электронами. Теоретическая оценка концентрации носителей заряда в частично заполненной зоне проводимости составляет 3.4×10<sup>21</sup> см<sup>-3</sup>. Точно такое же значение может находиться в отщепленной зоне, причем эти носители являются локализованными. Однако, теоретически предсказанное значение свободных носителей заряда в два раза превышает экспериментальное значение, полученное в результате холовских измерений (1.8×10<sup>21</sup> см<sup>-3</sup>) [26], и экспериментальный эффективный магнитный момент [8-10,14] в двое меньше (42 – 45 %) от максимально возможного значения 2.0  $\mu_{\rm B}$  на формульную единицу, указывая на одновременное присутствие как локализированных, так и делокализированных электронов в Nb<sub>12</sub>O<sub>29</sub>. К тому же наши результаты однозначно показывают, что в одной элементарной ячейке  $Nb_{12}O_{29}$  невозможно одновременное сосуществование как локализированных, так и делокализированных электронов, и, возможно, необходимо увеличение элементарной ячейки, чтобы воспроизвести экспериментальные данные.

#### БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Ландау, Л.Д. О движении электронов в кристаллической решетке / Л.Д. Ландау // Phys. Ztschr. Sow. 1933. Bd. 3. S. 664.
- Maxisch, T. Ab initio study of the migration of small polarons in olivine Li<sub>x</sub>FePO<sub>4</sub> and their association with lithium ions and vacancies / T. Maxisch, F. Zhou, and G. Ceder // Phys. Rev. B. 2006. Vol. 73, № 4. P. 104301.
- 3. Quantum Origin of the Oxygen Storage Capability of Ceria / N. V. Skorodumova [et al.] // Phys. Rev. Lett. 2002. Vol. 89, № 3. P. 166601.
- Hellman, O. Charge Redistribution Mechanisms of Ceria Reduction / O. Hellman, N. V. Skorodumova, and S. I. Simak // Phys. Rev. Lett. - 2012. - Vol. 108, № 13. - P. 135504.

- A. S. Alexandrov and N. F. Mott, High Temperature Superconductors and Other Superfluids (Taylor and Francis, London, 1994).
- Deskins, N. A. Localized Electronic States from Surface Hydroxyls and Polarons in TiO<sub>2</sub>(110) / N. A. Deskins, R. Rousseau, and M. Dupuis // J. Phys. Chem. C – 2010. – Vol. 113, № 5. – P. 14583.
- Bondarenko, N. Hole bipolaron formation at (100) MgO/CaO epitaxial interface / N. Bondarenko, O. Eriksson, and N. V. Skorodumova // Phys. Rev. B. 2014. Vol. 89, № 7. P. 125118.
- Antiferromagnetism and metallic conductivity of Nb<sub>12</sub>O<sub>29</sub> / R.J. Cava [et al.] // Nature (London) 1991. – Vol. 598, – P. 350.
- Electrical and magnetic properties of Nb<sub>2</sub>0<sub>5-δ</sub> crystallographic shear structures / R.J. Cava [et al.] // Phys. Rev. B – 1991. – Vol. 44, № 5. – P. 6973.
- Nanometer structural columns and frustration of magnetic ordering in Nb<sub>12</sub>O<sub>29</sub> / E.N. Andersen [et al.] // Phys. Rev. B 2005. Vol. 72, № 2. P. 033413.
- An n-Type Transparent Conducting Oxide: Nb<sub>12</sub>O<sub>29</sub> / T. Ohsawa [et al.] // J. Phys. Chem. C 2011. Vol. 115, № 15. – P. 16625.
- Rüscher, C. The effect of high polaron concentration on the polaron transport in NbO<sub>2.5-x</sub>: optical and electrical properties / C. Rüscher, E. Salje, and A. Hussain // J. Phys. C: Solid State Phys. – 1988. – Vol. 21, № 2. – P. 3737.
- Rüscher, C.H. Magnetic properties of phases possessing block type structures in the Nb<sub>2</sub>O<sub>5-2x</sub> system, with O<or=x<or=0.083 / C.H. Rüscher, and M. Nygren // J. Phys.:Condens. Matter – 1991. – Vol. 3, № 4. – P. 3997.
- Spin fluctuations in the antiferromagnetic metal Nb<sub>12</sub>O<sub>29</sub> / J.-G. Cheng [et al.] // Phys. Rev. B 2009. – Vol. 80, № 6. – P. 134428.
- Lee, K.-W. Organometalliclike localization of 4d-derived spins in an inorganic conducting niobium suboxide / K.-W. Lee and W. E. Pickett // Phys. Rev. B – 2015. – Vol. 91, № 9. – P. 195152.
- 16. Unexpected origin of magnetism in monoclinic Nb<sub>12</sub>O<sub>29</sub> from first-principles calculations / C. M. Fang [et al.] // J. Mater. Chem. C 2015. Vol. 3, № 4. P. 651.
- Kresse, G. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium / G. Kresse, J. Hafner // Phys. Rev. B. – 1994. – V. 49. – P. 14251–14269.
- Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set / G. Kresse, J. Furthmüller // Phys. Rev. B. – 1996. – V. 54. – P. 11169–11186.
- Perdew, J. Generalized Gradient Approximation Made Simple / J. P. Perdew, K. Burke, M. Ernzerhof // Phys. Rev. Lett. - 1996. - V. 77, № 18. - P. 3865-3868.
- Liechtenstein, A. I. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators // A. I. Liechtenstein, V. I. Anisimov, J. Zaane // Phys. Rev. B 1995. V. 52, № 8. P. R5467.
- 21. The Perdew-Burke-Ernzerhof exchange–correlation functional applied to the G2-1 test set using a plane-wave basis set / J. Paier [et al.] // J. Chem. Phys. 2005. V. 122, № 3. P. 234102.
- Heyd, J. Hybrid functionals based on a screened Coulomb potential / J. Heyd , G.E. Scuseria , M. Ernzerhof // J. Chem. Phys. 2003. V. 118, № 7. P. 8207.
- Heyd, J. Erratum, Hybrid functionals based on a screened Coulomb potential / J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207 // J. Chem. Phys. 2006. V. 124, № 6. P. 219906.
- Heyd, J. Assessment and validation of a screened Coulomb hybrid density functional / J. Heyd , G.E. Scuseria // J. Chem. Phys. 2004. V. 120, № 3. P. 7274.
- Heyd, J. Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria– Ernzerhof screened Coulomb hybrid functional / J. Heyd , G.E. Scuseria // J. Chem. Phys. – 2004. – V. 121, № 2. – P. 1187.
- 26. Magnetic ordering in the charge-ordered Nb<sub>12</sub>O<sub>29</sub> / A. Lappas [et al.] // Phys. Rev. B 2002. V. 65, № 11. – P. 134405.