БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Проректор по учебней работе и образовательным инповациям

О.И. Чуприс

(дата утверждения)

Регистрационный № УД=6179 /уч.

ОБРАБОТКА СИГНАЛОВ И ИЗОБРАЖЕНИЙ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности высшего образования второй ступени (магистратура):

1-31 80 07 Радиофизика

Учебная программа составлена на основе образовательного стандарта высшего образования ОСВО 1-31 80 07-2012 Радиофизика и учебного плана УВО G-31-284/уч. от 26.05.2017.

составитель:

И.Э.Хейдоров, доцент кафедры радиофизики и цифровых медиа технологий Белорусского государственного университета, кандидат физико-математических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой радиофизики и цифровых медиа технологий Белорусского государственного университета (протокол № 14 от 19 июня 2018 года);

Учебно-методической комиссией факультета радиофизики и компьютерных технологий Белорусского государственного университета (протокол № 10 от 19 июня 2018 года).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная программа дисциплины «Обработка сигналов и изображений» разработана для студентов II ступени высшего образования (магистратуры) специальности 1-31 80 07 Радиофизика в соответствии с требованиями образовательного стандарта высшего образования ОСВО 1-31 80 07-2012.

Дисциплина входит в цикл дисциплин специальной подготовки и относится к дисциплинам для изучения по выбору магистранта.

Данная учебная дисциплина призвана ознакомить магистрантов с современными технологиями, методами и алгоритмами цифровой обработки сигналов, изображений и видеопоследовательностей, звуковых сигналов и речи. Они также получают возможность освоить новые аппаратно — программные средства цифровой обработки сигналов на базе современных информационных технологий.

ЦЕЛЬ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель преподавания дисциплины: формирование знаний по современным технологиям, методам и алгоритмам цифровой обработки сигналов, изображений и видеопоследовательностей, звуковых сигналов и речи, а также выработка у студентов физического и инженерного подхода при проектировании новых аппаратно — программных средств цифровой обработки сигналов на базе современных информационных технологий.

Основная задача преподавания дисциплины состоит в том, чтобы обеспечить глубокую подготовку студентов магистратуры в области цифровой обработки сигналов и различных медиаданных, а также выработать навыки решения практических задач в данной области.

Изучение дисциплины «Обработка сигналов и изображений» базируется на знаниях, приобретенных магистрантами при изучении следующих дисциплин:

- «Теория информации»;
- «Программно-аппаратные средства обеспечения информационной безопасности»;
 - «Системы и сети передачи информации»;
 - «Статистическая радиофизика».

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Освоение программы по учебной дисциплине «Обработка сигналов и изображений» должно обеспечить формирование следующих компетенций:

Требования к **академическим** компетенциям магистра. Магистр должен иметь:

- 1. Способность к самостоятельной научно-исследовательской деятельности (анализ, сопоставление, систематизация, абстрагирование, моделирование, проверка достоверности данных, принятие решений и др.), готовность генерировать и использовать новые идеи.
- 2. Методологические знания и исследовательские умения, обеспечивающие решение задач научно-исследовательской, производственно-технологической, управленческой и инновационной деятельности.

Требования к социально-личностным компетенциям магистра.

Магистр должен:

- 1. Совершенствовать и развивать свой интеллектуальный и общекультурный уровень, добиваться нравственного и физического совершенствования своей личности.
- 2. Формировать и аргументировать собственные суждения и профессиональную позицию.
- 3. Анализировать и принимать решения по социальным, этическим, научным и техническим проблемам, возникающим в профессиональной деятельности.

Требования к профессиональным компетенциям магистра:

Магистр должен:

- 1. Работать с научно-технической информацией с использованием современных информационных технологий.
- 2. Владеть системным и сравнительным анализом.
- 3. Владеть междисциплинарным подходом при решении проблем.
- 4. Разрабатывать численные алгоритмы и программы.
- 5. Обосновывать достоверность полученных научных результатов.
- 6. Формулировать выводы и рекомендации по применению результатов научно исследовательской работы.

В результате изучения дисциплины обучаемый должен:

знать:

- базовые методы и алгоритмы цифровой обработки сигналов;
- особенности современного цифрового спектрального анализа;
- классификацию, принципы и особенности методов обработки мультимедийных данных;
- основные методы решения задач обработки мультимедийных данных и особенности программной реализации каждого из методов;
- принципы, особенности, основные методы решения задач цифровой обработки сигналов с использованием вейвлетных преобразований;
- базовую структуру, основные алгоритмы и схемы обработки изображений, видеопоследовательностей, звуковых сигналов;

уметь:

- применять изученные методы для решения задач цифровой обработки различных мультимедийных данных;
- реализовывать алгоритмы обработки мультимедийных данных в специализированных математических пакетах прикладного программного

обеспечения;

- применять полученные теоретические знания для обработки реальных экспериментальных данных и проектировании реальных цифровых устройств.

владеть:

- методами разработки и применения моделей сигналов и изображений;
- методами выбора целевой функции и обучения моделей объектов;
- технологиями решения задач обработки изображений.

Программа изучаемой дисциплины рассчитана на 124 часа, в том числе 50 аудиторных часов, из них: лекций - 20 часов, лабораторных работ – 30 часов.

Дисциплина преподается в III семестре II курса для магистрантов дневной формы получения высшего образования.

Текущая аттестация по дисциплине проводится в форме зачета.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Цифровая обработка сигналов.

Основные операции цифровой обработки сигналов: свертка, корреляция, цифровая фильтрация, модуляция, дискретные преобразования. Многоскоростные системы цифровой обработки сигналов. Разработка конверторов частоты дискретизации. Многофазная реализация интерполяторов. Основы адаптивной обработки сигналов. Адаптивные алгоритмы и рекурсивные схемы. Фильтры Калмана и их реализация.

Тема 2. Вейвлеты и обработка сигналов.

Вейвлет-преобразование. Мгновенные частоты. Двоичное вейвлетное преобразование. Вейвлет-пакеты и локальные косинусные базисы. Задачи аппроксимации. Сжатие сигналов. Вейвлеты и кратномасштабная обработка сигналов.

Тема 3. Современные методы спектрального анализа.

Параметрические модели случайных процессов. Авторегрессивный процесс и свойства спектра. Авторегрессивное спектральное оценивание. Алгоритмы блочной обработки данных. Алгоритмы обработки последовательных данных. Спектральное оценивание на основе модели авторегрессии — скользящего среднего.

Тема 4. Цифровая обработка изображений.

Цифровое представление изображений. Пространственные и частотные методы улучшения изображения. Восстановление изображений. Морфологическая обработка изображений. Сегментация изображений. Индексация изображений. Распознавание объектов.

темы			Количество аудиторных часов			ЭВ	Я
Номер раздела,	Название раздела, темы	лекции	Практические занятия	Лабораторные занятия	иное	Количество часов УСР	Формы контроля знаний
1	2	3	4	5	6	7	9
1	Цифровая обработка сигналов (18 ч.)	6					Устный опрос
	1.1 Лабораторная работа «Основные операции цифровой			12			Отчет по лабораторной
	обработки сигналов».			12			работе
2	Вейвлеты и обработка сигналов (18 ч.)	6					Устный опрос
	2.1. Лабораторная работа «Вейвлетные преобразования».			12			Отчет по лабораторной
				12			работе
3	Современные методы спектрального анализа (2 ч.)	2					Устный опрос
4	Цифровая обработка изображений (12 ч.)	6					Устный опрос
	4.1. Лабораторная работа «Цифровое представление						Отчет по лабораторной
	изображений. Пространственные и частотные методы			6			работе
	улучшения изображения».						

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ Список рекомендуемой литературы

Основная литература

- 1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing (4th Edition) ISBN 10: 0133356728, Edition: 4, 2017, 1168 p
- 2. John C. Russ, F. Brent Neal The Image Processing Handbook, Seventh Edition, CRC Press, Inc. Boca Raton, FL, USA ©2017
- 3. Stan Birchfield, Image Processing and Analysis (Activate Learning with these NEW titles from Engineering!), ISBN 1285179528, Cengage Learning, 2017
- 4. Айфичер, Э. Цифровая обработка сигналов: практический подход / Э.Айфичер, Б.Джервис. М.: Изд. дом "Вильямс", 2004. 992 с.
- 5. Оппенгейм, А.В. Цифровая обработка сигналов / А.В. Оппенгейм, Р.В. Шафер. М.: Техносфера, 2006. 356 с.
- 6. Рабинер, Л.Р. Теория и применение цифровой обработки сигналов / Л.Р. Рабинер, Б. Гоулд. М.: Мир, 1978. 848 с.
- 7. Марпл-мл., С.Л. Цифровой спектральный анализ и его приложения / С.Л. Марпл-мл. М.: Мир, 1990. 584 с.
- 8. Стивен, С. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников / С. Стивен. М.: Додэка XXI, 2008. 720 с.
- 9. Ван Трис, Γ . Теория обнаружения, оценок и модуляции / Γ . Ван Трис. М.: Сов.радио,1976.
- 10. Малла, С. Вейвлеты в обработке сигналов / С. Мала. М.: Мир, 2005.
- 11. А.В. Тузиков Основы цифровой обработки изображений. Мн.: БГУ, 2005.

Дополнительная литература

- 1. Лайонс, Р. Цифровая обработка сигналов. / Р. Лайонс. М.: ООО "Бином-Пресс", 2006. 656 с.
- 2. Куприянов, М.С. Цифровая обработка сигналов / М.С. Куприянов, Б.Д. Матюшкин. СПб.: Политехника, 2002. 592 с.
- 3. Константинидис и др. М.: Энергоатомиздат, 1983. 360 с.
- 4. Корнеев, В.В. Современные микропроцессоры. / В.В. Корнеев, А.В. Киселев. СПб.: БХВ–Петербург, 2003. 448 с.
- 5. Смоленцев Н.К. Введение в теорию вейвлетов. Ижевск: РХД, 2010. 292 с.

Список компьютерных программ

- 1. Audacity. Мультиканальный аудиоредактор и рекордер для Windows, Mac OS X, GNU/Linux и других операционных систем
- 2. RStudio свободная среда разработки программного обеспечения с открытым исходным кодом для языка программирования R, который предназначен для статистической обработки данных и работы с графикой.

ДИАГНОСТИКА КОМПЕТЕНЦИЙ СТУДЕНТА

Учебным планом специальности в качестве формы текущей аттестации по учебной дисциплине «Обработка сигналов и изображений» предусмотрен зачет. Оценка учебных достижений студента производится по шкале зачтено/не зачтено.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов используются следующие формы:

- тестирование;
- отчеты по лабораторным работам с их устной защитой.

МЕТОДИКА ФОРМИРОВАНИЯ ИТОГОВОЙ ОЦЕНКИ

Итоговая оценка по дисциплине формируется на основе оценки по устному ответу на зачете и оценки текущего контроля. Весовой коэффициент оценки зачета - 0,6; весовой коэффициент текущей успеваемости - 0,4. Оценка текущего контроля формируется на основании оценок отчетов по лабораторному практикуму и результатов тестирования с равными весовыми коэффициентами.

Итоговая оценка формируется в соответствии со следующими документами:

- «Об утверждении правил проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования». Постановление Министерства образования Республики Беларусь от 29 мая 2012 г. № 53.
- «Положение о рейтинговой системе оценки знаний по дисциплине в Белорусском государственном университете». Приказ ректора БГУ от 18.08.2015
 № 382-ОД.
- «Критерии оценки знаний и компетенций студентов по десятибалльной шкале». Письмо Министерства образования Республики Беларусь № 09-10/53-ПО от 28.05.2013.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название	Название кафедры	Предложения об	Решение,
дисциплины, с		изменениях в	принятое
которой требуется		содержании	кафедрой,
согласование		учебной	разработавшей
		программы по	учебную
		изучаемой	программу (с
		учебной	указанием даты и
		дисциплине	номера протокола)
Промышленное	Радиофизики и	Предложений об	Изменения не
программирование	цифровых медиа	изменениях в	требуются,
	технологий	содержании	протокол №14
		учебной	от 19.06.2018.
		программы нет	
Методы	Радиофизики и	Предложений об	Изменения не
машинного и	цифровых медиа	изменениях в	требуются,
глубокого	технологий	содержании	протокол №14
обучения		учебной	от 19.06.2018.
		программы нет	

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ НА ______/__УЧЕБНЫЙ ГОД

No	Дополнения и изменения	Основание
п/п		

ради	бная программа пересмотрена и одобрена на заседании п пофизики и цифровых медиа технологий токол № от 20 г.)	кафедры
цифј	дующий кафедрой радиофизики и ровых медиа технологий -м.н., доцент	І.Э.Хейдоров
VTD		

УТВЕРЖДАЮ Декан факультета радиофизики и компьютерных технологий к.ф.-м.н., доцент

С.В.Малый