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1. INTRODUCTION

Let Γ be a simple smooth closed curve on the complex plane C dividing C into two domains D+ � 0
and D− � ∞. By the factorization of a non-singular continuous complex-valued matrix-function
G ∈ (C(Γ))n×n it is understood the determination of matrices G± analytic in D±, respectively, together
with their inverses (G±)−1, and of the diagonal matrix Λ(t) = diag {tκ1 , . . . , tκn}, κ1, . . . , κn ∈ Z, such
that the following representation of the matrix G

G(t) = G+(t)Λ(t)G−(t), t ∈ Γ, (1)

holds on Γ. The representation (1) is called the left (continuous or standard) factorization. A similar
representation G(t) = G−(t)Λ(t)G+(t) is called the right (continuous or standard) factorization.
If the left (right) factorization exists, then the integer numbers κ1, . . . , κn, which are called partial
indices, are determined uniquely up to their order. In particular, there exists a constant nonsingular
transformation of factors G+, G−, such that κ1 ≥ . . . ≥ κn. The factors G+, G− are not determined
uniquely (in fact, they are found up to multiplication on special non-singular polynomial matrices,
see [6]).

Factorization of matrix-functions was first considered in connection with the solution of the vector-
matrix Riemann (or Riemann–Hilbert) boundary value problem (see, e.g., [3, 4]). Such problem is
to determine vectors Φ+,Φ−, analytic in D+,D− \ {∞}, respectively, satisfying the following linear
relation:

Φ+(t) = G(t)Φ−(t), t ∈ Γ, (2)

where G(t), t ∈ Γ, is a given non-singular matrix-function. The problem (2) was formulated by Riemann
in his work on the construction of complex differential equations with a given monodromy group (see,
e.g., [12]). In [2, 7], the solution to the Riemann vector-matrix boundary value problem (2) has
been reduced to the solution of the equivalent system of singular integral equations. Note, that as
opposed to the one-dimensional case (see [4]), in the vector-matrix situation it is not always possible to
represent the solution to (2) in so called closed form. Analogously, it is not found a general constructive
approach which allows to have a finite algorithm for determination of factors and partial indices in the
factorization problem. Such approach has been proposed only for special types of matrices such as, e.g.,
for factorization of meromorphic matrix-functions in [1] or for factorization of triangle matrix-functions
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of the second order in [10]. A number of other constructive results has been described in the survey
paper [8].

In this article, it is proposed an algorithm for solution of the factorization problem for triangle matrix-
functions of arbitrary order generalizing Chebotarev’s method [10]. The main idea of the approach in [10]
is in a justification of the equivalence of the factorization problem to the construction of the matrix
solution X±(z) of the problem (2), having a normal form at infinity (so called canonical matrix). This
means that the sum of orders of its columns is equal to the order at infinity of the determinant of X−(z).
Remind that the order of a column at a point is the minimum of the orders of its elements at this point,
but the order of a function is equal to the order of its zero or minus order of its pole. If X±(z) is the
canonical matrix, then the orders of columns of the matrix X−(z) at infinity coincide with the partial
indices κj of G, and the factors can be determined as follows: G+ = X+, G− = Λ(−1)(X−)(−1), where
Λ(z) = diag {zκ1 , . . . , zκn}. For further convenience we briefly describe here Chebotarev’s algorithm.
Let

A(t) =

⎛
⎝ζ1(t) 0

a(t) ζ2(t)

⎞
⎠ .

Denote κj = indΓζj(t) and let x±j (z) be canonical functions for the homogeneous Riemann boundary
value problems with coefficients ζj(t), respectively (see [4]), j = 1, 2. Then piece-wise analytic matrix

X±(t) =

⎛
⎝ x±1 (t) 0

x±2 (t)φ
±(t) x±2 (t)

⎞
⎠ , φ±(z) =

1

2πi

∫

Γ

a(τ)x−1 (τ)dτ

x+2 (τ)(τ − z)
, z ∈ D±,

satisfies the following boundary condition X+(t) = A(t)X−(t). Let μ ≥ 1 be the order of the function
φ−(t) at infinity. The orders of non-zero elements of the matrix X−(z) at infinity can be characterized
by the following table ⎛

⎝ κ1 −

κ2 + μ κ2

⎞
⎠ .

If κ1 ≤ κ2 + μ, then the matrix X−(z) has the normal form at infinity, i.e. it is the canonical matrix.
Thus, partial indices of the matrix A(t) are equal (κ1, κ2).

In the case κ1 > κ2 + μ G. N. Chebotarev proposed the following method of construction of the
canonical matrix.

Let the function 1/φ−(z) admits the following expansion in (generally speaking infinite) continued
fraction

1

φ−(z)
= qγ0(z) +

1

qγ1(z) + 1
qγ2 (z)+...

,

where qγi(z) are polynomials of orders γi, respectively (γ0 = μ). Denote μ1 = γ0 + γ1, μ2 = γ0 + γ1 +
γ2, ..., μn = γ0 + γ1 + . . .+ γn, ... .

Proposition 1 (G. N. Chebotarev). If μ, μ+ μ1, μ1 + μ2, . . . , μi−1 + μi < κ1 − κ2, but μi + μi+1 ≥
κ1 − κ2, then the partial indices of the matrix A(t) are equal (κ1 − μi, κ2 + μi), wherein the
canonical matrix has the form

X̃+(z) =

⎛
⎝ x+1 (z) 0

x+2 (z)φ
+(z) x+2 (z)

⎞
⎠P (z), X̃−(z) =

⎛
⎝x−1 (z)q

μi−1(z) x−1 (z)q
μi(z)

x−2 (z)rμi(z) x−2 (z)rμi+1(z)

⎞
⎠ .

Here P (z) is the polynomial matrix with the unit determinant, i.e. detP (z) ≡ 1, and the functions
rμi(z), rμi+1(z) are analytic in D−. They are constructed by using expansion of 1/φ−(z) in the
continued fraction.

The proof is based on the elementary transformations of the columns of the matrix X−(z) (see [10]).
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2. AUXILIARY LEMMA

In order to avoid additional technical difficulties, we consider, in what follows, matrix-functions with
Hölder continuous entries. Tough the proposed method could be realized for wider classes of matrix-
functions. Chebotarev’s method is extended here to the triangular matrix-functions of arbitrary order.
An inductive consideration which allows to obtain such an extension is based on the following auxiliary
statement.

Lemma 1. Let Γ be a simple smooth closed contour, and B(t), t ∈ Γ be a non-singular Hölder
continuous square matrix-function of the order n having the following form:

B(t) =

⎛
⎝ A(t) 0

b1(t) . . . bn−1(t) c(t)

⎞
⎠ , 0 =

⎛
⎜⎜⎜⎝

0
...

0

⎞
⎟⎟⎟⎠ . (3)

Suppose that the non-singular square matrix-function A(t) of the order n− 1 admits factor-
ization A(t) = A+(t)Λ(t)A−(t), where Λ(t) = diag {tκ1 , . . . , tκn−1}. Then the matrix-function B(t)
possesses factorization if the following matrix does:

⎛
⎝ Λ(t) 0

(b(t)|Y−
1 (t)) . . . (b(t)|Y−

n−1(t)) c(t)

⎞
⎠ .

Here b(t) = (b1(t), . . . , bn−1(t)) is the row of first n− 1 entries of the lowest row of B(t), Y−
j (t) =

(y−1j(t), . . . , y
−
n−1,j(t))

T is the j-th column of the matrix-function Y −(t) = (X−(t))(−1), and

(b(t)|Y−
j (t)) =

n−1∑
k=1

bk(t)y
−
kj(t).

� Really, in the above conditions the matrix-function B(t) can be represented in the form

B(t) =

⎛
⎝X+(t) 0

0 . . . 0 1

⎞
⎠

⎛
⎝ Λ(t) 0

(b(t)|X−
1 (t)) . . . (b(t)|X−

n−1(t)) c(t)

⎞
⎠

⎛
⎝X−(t) 0

0 . . . 0 1

⎞
⎠ .

By this representation the conclusion of the lemma follows. �

Therefore, if a matrix-function of n-th order has the form (3) and satisfies the conditions of Lemma 1
(i.e. contains the block A(t) of order n− 1 admitting factorization), then its factorization is reduced to
the factorization of triangular matrix of n-th order having the above described special form. This is a
base for an inductive approach, in particular in the case when the matrix A(t) is a triangular one.

3. SOLUTION TO THE FACTORIZATION PROBLEM
FOR A TRIANGULAR MATRIX-FUNCTION OF THE THIRD ORDER

Let A(t), t ∈ Γ, be a non-singular triangular matrix-function of the 2-nd order with Hölder con-
tinuous entries. It is known [10] that such a matrix possesses factorization, i.e. admits the following
representation A(t) = A+(t)Λ(t)A−(t), where Λ(t) = diag {tκ1 , tκ2}. Partial indices of A(t) are equal
κ1, κ2, and besides (see, e.g., [2]) κ1 + κ2 = indΓ detA(t). By Lemma 1 the factorization of the matrix-
function

B3(t) =

⎛
⎝ A(t) 0

b1(t)b2(t) c(t)

⎞
⎠
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is reduced to the factorization of a non-singular 3-rd order triangular matrix function D3(t) of special
kind. Let us write such a matrix in a slightly more general form and suppose that its angular element is
equal d33(t) = c(t) ≡ 1 (without loss of generality due non-singularity of D3(t)):

D3(t) =

⎛
⎜⎜⎜⎝

ζ1(t) 0 0

0 ζ2(t) 0

a1(t) a2(t) 1

⎞
⎟⎟⎟⎠ .

All entries of this matrix are Hölder continuous on Γ. Hence (see, e.g., [4]) the functions ζj(t), j = 1, 2,
can be factorized in the form

x+j (t) = ζj(t)x
−
j (t). (4)

Let the orders at the infinity of the functions x−j (z), j = 1, 2, be equal κj = ind ζj(t). Denote

φ±
j (z) :=

1

2πi

∫

Γ

aj(τ)x
−
j (τ)

τ − z
dτ, j = 1, 2.

Then the analytic in D± matrix-functions

X±
3 (z) =

⎛
⎜⎜⎜⎝

x±1 (z) 0 0

0 x±2 (z) 0

φ±
1 (z) φ±

2 (z) 1

⎞
⎟⎟⎟⎠

satisfy the following boundary condition X+
3 (t) = D3(t)X

−
3 (t), t ∈ Γ. Let γ1 ≥ 1, γ2 ≥ 1 be the

orders of the functions φ−
1 (z), φ

−
2 (z) at infinity. Note that ind detD3(t) = κ1 + κ2. In these no-

tations the orders of columns of the matrix-function X−
3 (z) at the infinity are equal, respectively:

(min{κ1, γ1},min{κ2, γ2}, 0). If

κ1 ≤ γ1, κ2 ≤ γ2, (5)

then X−
3 (z) has the normal form at the infinity and thus X±

3 (z) is the canonical matrix. In this case the
partial indices of D3(z) are equal (κ1, κ2, 0) . If at least one of inequalities (5) is violated, then X−

3 (z)
does not have the normal form at the infinity.

Let us consider the possible situations: 1) κ1 ≤ γ1, κ2 > γ2; 2) κ1 > γ1, κ2 ≤ γ2; 3) κ1 > γ1,
κ2 > γ2. In the cases 1) and 2) one can apply directly Chebotarev’s method [10], since in these cases it
is necessary to carry out the elementary transformations only with the second and the third columns (in
the case 1)) or with the first and the third columns (in the case 2)). Let us expand the functions 1/φ−

j (z)

in the (generally infinite) continued fraction
1

φ−
j (z)

= qλj,0(z) +
1

qλj,1(z) + 1

qλj,2(z)+...

,

where λj,i is the order of the polynomial qλj,i(z), λj,0 = γj . Denote μj,k = λj,0 + λj,1 + . . .+ λj,k,
j = 1, 2. Then, according to Proposition 1, in the cases 1) and 2) the partial indices of the matrix-
function D3(z) are equal (κ1, κ2 − μ2,n, μ2,n), (κ1 − μ1,l, κ2, μ1,l), respectively. Here the parameters
μ2,n, μ1,l are determined as in Chebotarev’s algorithm.

Now return to the case 3), i.e. when κ1 > γ1, κ2 > γ2. The following situations are possible

I a) κ1 − γ1 ≤ κ2 − γ2, γ1 ≤ γ2, b) κ1 − γ1 ≤ κ2 − γ2, γ2 ≤ γ1,

II a) κ1 − γ1 ≥ κ2 − γ2, γ1 ≤ γ2, b) κ1 − γ1 ≥ κ2 − γ2, γ2 ≤ γ1.

Let us consider the case Ia).
The fraction φ−

1 (z)/φ
−
2 (z) can be represented in a neighborhood of the infinity in the form

φ−
1 (z)/φ

−
2 (z) = qγ2−γ1(z) + r1(z),
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where qγ2−γ1(z) is a polynomial of the order γ2 − γ1, and a function r1(z), analytic in a neighborhood
of the infinity, has the order ν1 at the infinity. Analogously, 1/φ−

2 (z) = qγ2(z) + r̃1(z), where qγ2(z) is a
polynomial of the order γ2, and a function r̃1(z), analytic in a neighborhood of the infinity, has the order
ν̃1 at the infinity.

We proceed with the following elementary transformation of the matrix-function X−
3 (z): multiply the

second column on qγ2−γ1(z) and subtracted it from the first one, then multiply the second column on
qγ2(z) and subtracted it from the third one. Then we get the matrix-function

X−
3,1(z) =

⎛
⎜⎜⎜⎝

x−1 (z) 0 0

−x−2 (z)q
γ2−γ1(z) x−2 (z) −x−2 (z)q

γ2(z)

φ−
2 (z)r1(z) φ−

2 (z) φ−
2 (z)r̃1(z)

⎞
⎟⎟⎟⎠ .

The order at the infinity of its first column is determined either by the order of the first element x−1 (z),
or by the order of the third element φ−

2 (z)r1(z). Similarly, the order at the infinity of the third column is
determined either by the order of its second element −x−2 (z)q

γ2(z), or by the order of the third element
φ−
2 (z)r̃1(z). The following sets of inequalities are possible

Ia1) κ1 ≤ γ2 + ν1, κ2 − γ2 ≤ γ2 + ν̃1,

Ia2) κ1 ≤ γ2 + ν1, γ2 + ν̃1 < κ2 − γ2,

Ia3) γ2 + ν1 < κ1, κ2 − γ2 ≤ γ2 + ν̃1,

Ia4) γ2 + ν1 < κ1, γ2 + ν̃1 < κ2 − γ2. (6)

In the case Ia1) the matrix-function X−
3,1(z) has the normal form at the infinity and partial indices of

D3(z) are equal (κ1, γ2, κ2 − γ2). In the case Ia2) by taking into account the representation of the
expression 1/φ−

2 (z) in the continued fraction and proceeding with elementary transformations of the
first and third columns according to Chebotarev’s method, we also obtain the canonical matrix. Wherein
the partial indices of D3(z) are equal (κ1, κ2 − γ2 − γ̃m, γ2 + γ̃m), where γ̃m = ν̃1 + ν̃2 + . . .+ ν̃m, and
γ2 + γ̃m ≤ κ2 − γ2 − γ̃m ≤ γ2 + γ̃m+1. In the case Ia3) by taking into account the representation of
the expression φ−

1 (z)/φ
−
2 (z) in the continued fraction and proceeding with elementary transformations

of the last two columns according to Chebotarev’s method, we also obtain the canonical matrix.
The partial indices are then equal

(
2γ2 + γl, κ1 − γ2 − γl, κ2 − γ2

)
, where γl = ν1 + ν2 + . . .+ νl, and

2γ2 + γl ≤ κ1 − γ2 − γl ≤ 2γ2 + γl+1.
If the inequalities Ia4) are satisfied, then we have to consider the cases:

κ1 − γ2 − ν1 ≤ κ2 − 2γ2 − ν̃1 : A) ν̃1 ≤ ν1; B) ν1 ≤ ν̃1;

κ2 − 2γ2 − ν̃1 ≤ κ1 − γ2 − ν1 : A) ν̃1 ≤ ν1; B) ν1 ≤ ν̃1.

In both situations we continue elementary transformations by Chebotarev’s method, obtain finally the
canonical matrix and calculate the partial indices.

Consider now the case Ib), i.e. κ1 − γ1 ≤ κ2 − γ2, γ2 ≤ γ1. Then

φ−
2 (z)

φ−
1 (z)

= qγ1−γ2(z) + s1(z),
1

φ−
2 (z)

= qγ2(z) + r̃1(z),

where s1(z), r̃1(z) are functions analytic in a neighborhood of the infinity having at the infinity the orders
μ1, μ̃1 = ν̃1, respectively.

Let us carry out the following elementary transformations: multiply the second column on qγ2 and
subtract it from the third one, then multiply the first column on qγ1−γ2 and subtract it from the second
one. We obtain the following matrix:

X−
3,1(z) =

⎛
⎜⎜⎜⎝

x−1 (z) −x−1 (z)q
γ1−γ2(z) 0

0 x−2 (z) −x−2 (z)q
γ2(z)

φ−
1 (z) φ−

1 (z)s1(z) φ−
2 (z)r̃1(z)

⎞
⎟⎟⎟⎠ .
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The order at the infinity of the second column of this matrix is determined either by the order of the first
element −x−1 (z)q

γ1−γ2(z), or by the order of the third element φ−
1 (z)s1(z). Similarly, the order at the

infinity of the third column is defined either by the order of the second element −x−2 (z)q
γ2(z), or by the

order of the third element φ−
2 (z)r̃1(z). Further, it is sufficient to examine the situations analogous to

those considered in the cases (6).
Let us specify the conditions under which the canonical matrix for D3(t) and its partial indices are

determined by a modification of the above described approach.1)

Let the following inequality κ1 − γ1 ≤ κ2 − γ2 holds. The canonical matrix for the matrix of the 2nd

order

⎛
⎝ζ2(t) 0

a2(t) 1

⎞
⎠ has the form

X̃+(z) =

⎛
⎝ x+2 (z) 0

x+2 (z)φ
+
2 (z) x+2 (z)

⎞
⎠P (z), X̃−(z) =

⎛
⎝x−2 (z)q

γ2
i−1(z) x−2 (z)q

γ2
i (z)

rγ2
i
(z) rγ2

i+1
(z)

⎞
⎠ .

Then the pair of matrices

X̃+
3,2(z) =

⎛
⎜⎜⎜⎝

x+1 (z) 0 0

0

φ+
1 (z)

⎛
⎝ x+2 (z) 0

x+2 (z)φ
+
2 (z) x+2 (z)

⎞
⎠P (z)

⎞
⎟⎟⎟⎠ ,

X̃−
3,2(z) =

⎛
⎜⎜⎜⎝

x−1 (z) 0 0

0 x−2 (z)q
γ2
i−1(z) x−2 (z)q

γ2
i (z)

φ−
1 (z) rγ2

i
(z) rγ2

i+1
(z)

⎞
⎟⎟⎟⎠

satisfies the following boundary condition: X̃+
3,2(t) = D3(t)X̃

−
3,2(t). Now, to obtain the canonical matrix

for D3(t) it is sufficient to transform the matrix-function X̃−
3,2(z) to the normal form at infinity.

Let the following conditions are valid: κ1 − γ1 ≤ κ2 − γ2i−1 − γ2i , and either a) γ1 ≤ γ2i , or b) γ2i ≤ γ1.

If γ1 ≤ γ2i , then φ−
1 (z)/rγ2

i
(z) = qγ

2
i −γ1(z) + r̃1(z), where r̃1(z) has the order μ̃1 ≥ 1 at the infinity.

We multiply the second column of X̃−
3,1(z) on qγ

2
i −γ1(z) and subtract it from the first one. We get the

matrix

X̃−
3,3(z) =

⎛
⎜⎜⎜⎝

x−1 (z) 0 0

−x−2 (z)q
γ2
i−1(z)qγ

2
i −γ1(z) x−2 (z)q

γ2
i−1(z) x−2 (z)q

γ2
i (z)

r̃1(z)rγ2
i
(z) rγ2

i
(z) rγ2

i+1
(z)

⎞
⎟⎟⎟⎠ .

The order of the first column is determined either by the first or by the third elements.

If κ1 ≤ μ̃1 + γ2i , then the matrix-function X̃−
3,3(z) has a normal form at infinity and partial indices of

D3(t) are equal
(
κ1, γ

2
i , κ2 − γ2i

)
.

If ≤ μ̃1 + γ2i ≤ κ1, then by using representation of φ−
1 (z)/rγ2

i
(z) in continued fraction, after finite

number of steps we construct the canonical matrix and obtain the partial indices of D3(t) in the form(
γ2i + μ̃l, κ1 − μ̃l, κ2 − γ2i

)
.

Remark 1. The condition κ1 − γ1 ≤ κ2 − γ2i−1 − γ2i could be valid only if κ1 − γ1 < κ2 − γ2.

1)By this modified method we obtain the final result faster. Anyway, it should be noted that such modification can be applied
only under certain restrictions on the parameters of the considered matrix.
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If γ2i ≤ γ1, then we have to consider the expression rγ2
i
(z)/φ−

1 (z) and proceed with the similar

considerations. In this case the partial indices of D3(t) are equal
(
μ̃l, κ1 − μ̃l + γ2i , κ2 − γ2i

)
.

If κ2 − γ2 ≤ κ1 − γ1, then we have to construct first the canonical matrix for the following matrix-
function ⎛

⎜⎜⎜⎝

ζ1(z) 0 0

0 1 0

a1(t) 0 1

⎞
⎟⎟⎟⎠ ,

and then to repeat the transformations similar to those above described.

4. ON FACTORIZATION OF TRIANGULAR MATRIX-FUNCTIONS
OF ARBITRARY ORDER

Extending Chebotarev’s method to higher dimension we first examine the above treated case n = 3.
It can be noted that in the above algorithm only relations between orders at infinity γi of functions φi and
orders κi of diagonal elements, as well as relations between parameters κi − γi, play the role. If we take
into account an inductive consideration, then together with the above noticed it could allow us to extend
algorithm for the triangular matrix-functions of the arbitrary order.

Let us consider an n-th order (n ≥ 3) non-singular triangular matrix-function of the form

Dn(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ1(t) 0 . . . 0

0 ζ2(t) . . . 0

. . . . . . . . . . . .

a1(t) a2(t) . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Factorizing the diagonal elements ζj(t) (see [4]) we come to the conclusion that analytic in D± matrices

X±
n (z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x±1 (z) 0 . . . 0

0 x±2 (z) . . . 0

. . . . . . . . . . . .

φ±
1 (z) φ±

2 (z) . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with φ±
j (z) =

1
2πi

∫
Γ

aj(t)x
−
j (t)dt

(t−z) , z ∈ D±, satisfy the boundary condition X+
n (t) = Dn(t)X

−
n (t), t ∈ Γ.

Let the indices of the functions ζj(t) be equal κj , and the orders at the infinity of the functions φj(z),
analytic in D−, be equal γj ≥ 1, j = 1, . . . , n− 1.

The following situations are possible:
1. κ1 ≤ γ1, . . . , κn−1 ≤ γn−1;
2. ∃j : 1 ≤ j < n− 1, such that exactly j inequalities have opposite sign;
3. κ1 > γ1, . . . , κn−1 > γn−1.
In the first case the matrix-function X−

n (z) has the normal form at the infinity. Thus, Xpm
n (z) is the

canonical matrix. Therefore, the partial indices are equal (κ1, . . . , κn−1, 0).
In the second case we have to use j columns and the last column in order to transform the matrix of

order j + 1 < n to the normal form at the infinity. This is possible due to the inductive assumption.
In the third case we propose the following algorithm.
Every column of the matrix X−

n (z) is characterized by the pair of numbers (γj, κj) , j = 1, . . . , n. In
the last column we have only one non-zero element. Hence we put γn = κn = 0. For shortness we will
identify the columns with their characteristic pairs.
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We split the set of all columns according to the following rule:

- let γ̃1 = max
1≤j≤n

γj ; we fix the column (γ̃1, κ̃1) and denote its number by j̃1;

- denote by E1 the following set (class) of columns: E1 = {(γj, κj) |κj − γj ≤ κ̃1 − γ̃1} ;
- let γ̃2 = max

(γj ,κj) �∈E1

γj and γ̃2 ≤ γ̃1; we fix the column (γ̃2, κ̃2);

- determine the set (class) of columns E2 as follows: E2 = {(γj , κj) |κ̃1 − γ̃1 < κj − γj ≤ κ̃2 − γ̃2} .
By continuing this process we obtain the partition of the set of all columns into the classes

E1, E2, . . . , El.
Remark 2. It can happen that each class consists of the only one element.
The columns (γ̃1, κ̃1) , (γ̃2, κ̃2) , . . . , (γ̃l, κ̃l) satisfy the inequalities κ̃1 − γ̃1 < κ̃2 − γ̃2 < . . . < κ̃l −

γ̃l, and γ̃l ≤ . . . ≤ γ̃2 ≤ γ̃1. We proceed with elementary transformations of the matrix-function X−
n (z)

according to the following scheme.
1-st step. The columns of the class E1 we transform by using the column (γ̃1, κ̃1). If (γi, κi) ∈ E1,

then the expression φ−
i (z)/φ

−
j̃1
(z) can be written in a neighborhood of the infinity in the form

φ−
i (z)/φ

−
j̃1
(z) = qγ̃1−γi(z) + r1i (z),

where the function r1i (z) is analytic in a neighborhood of the infinity and has at the infinity the order
λ1
i ≥ 1. Multiplying the column (γ̃1, κ̃1) on qγ̃1−γi(z) and subtracting from the column (γi, κi), we

obtain that the later contain three non-zero elements x−i (z), −x−
j̃1
(z)qγ̃1−γi(z), φ−

j̃1
(z)r1i (z). The order

of this column is determined either by the order of the element x−i (z) or by the order of the element
φ−
j̃1
(z)r1i (z). Thus it is equal either κi or γ̃1 + λ1

i . The similar transformations we apply to all columns

from E1.
2-nd step. Analogous transformations we apply to all classes E2, . . . , El. Now it is necessary to

check remaining columns (γ̃1, κ̃1) , (γ̃2, κ̃2) , . . . , (γ̃l, κ̃l). The scheme of transformation is the following:
(γ̃1, κ̃1) ← (γ̃2, κ̃2) ← . . . ← (γ̃l, κ̃l) ← (0, 0). Let us briefly describe the details of this scheme.

The fraction 1/φ−
j̃l
(z) can be written in the form 1/φ−

j̃l
(z) = qγ̃l(z) + r1l (z), where the order at the

infinity of the function r1l (z) is equal λ1
l ≥ 1. We multiply the column (γ̃l, κ̃l) on qγ̃l(z) and subtract it

from the last column. Non-zero elements in the transformed column are −x−
j̃l
(z)qγ̃l(z) and φ−

j̃l
(z)r1l (z).

Their orders at the infinity are equal κ̃l − γ̃l and γ̃l + λ1
l , respectively.

The fraction φ−
j̃l
(z)/φ−

j̃l−1
(z) can be written in the form φ−

j̃l
(z)/φ−

j̃l−1
(z) = qγ̃l−1−γ̃l(z) + r1l−1(z),

where the order at the infinity of the function r1l−1(z) is equal λ1
l−1 ≥ 1.

We multiply the column (γ̃l−1, κ̃l−1) on qγ̃l−1−γ̃l(z) and subtract it from the column (γ̃l, κ̃l). Non-
zero elements in the transformed column are−x−

j̃l−1
(z)qγ̃l−1−γ̃l(z), x−

j̃l
(z) and φ−

j̃l−1
(z)r1l−1(z). The order

of the transformed column is equal either κj̃l−1
− γ̃l−1 + γ̃l, or γ̃l−1 + λ1

l−1.

We continue this process up to the last pair of columns. For them we will use the following
representation φ−

j̃2
(z)/φ−

j̃1
(z) = qγ̃1−γ̃2(z) + r11(z), where the order at the infinity of the function r11(z)

is equal λ1
1 ≥ 1. By using this representation we get in the column j̃2 the following non-zero elements

−x−
j̃1
(z)qγ̃1−γ̃2(z), x−

j̃2
(z) and φ−

j̃1
(z)r11(z). The order of this column is equal either κj̃1 − γ̃1 + γ̃2, or

γ̃1 + λ1
1. The column (γ̃1, κ̃1) is not transformed. Therefore, after all these transformations we obtain the

matrix-function X−
n,1(z) which is characterized by one of the following two conditions:

1) the order of the only one column is determined by the element of the n-th row of the matrix X−
n,1(z)

(this is the column (γ̃1, κ̃1));
2) the orders of several (possibly all) columns are determined by the elements of the n-th row of the

matrix.
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In the first case the matrix-function X−
n,1(z) has a normal form at infinity and thus the partial indices

of the matrix-function Dn(t) coincide with the orders of columns of X−
n,1(z).

In the second case, two situations are possible:
a) if the orders at the infinity of less than n− 1 columns are determined by the last row, then the result

follow from the inductive assumption;
b) if the orders at infinity of all n− 1 column are determined by the last row, then we further proceed

with transformation of the matrix-function X−
n,1(z) to the normal form at the infinity by using the above

described scheme.
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