ОПТИКА И СПЕКТРОСКОПИЯ, 2013, том 115, № 3, с. 383–388

— ФУНДАМЕНТАЛЬНЫЕ ПРОБЛЕМЫ ОПТИКИ 2012 —

УДК 535.34; 530.182

## ПРЕОБРАЗОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ ПОЛЯРИЗАЦИОННЫМИ ДИНАМИЧЕСКИМИ ГОЛОГРАММАМИ

© 2013 г. О. Г. Романов, Д. В. Горбач, А. Л. Толстик

Белорусский государственный университет, 220030 Минск, Беларусь E-mail: romanov@bsu.by, tolstik@bsu.by Поступила в редакцию 22.01.2013 г.

Представлены результаты теоретического и экспериментального исследований закономерностей преобразования топологической и поляризационной структур оптических вихрей поляризационными динамическими голограммами, сформированными импульсными гауссовыми и сингулярными световыми пучками в растворах красителей.

DOI: 10.7868/S0030403413090201

Как правило, при записи как статических, так и динамических голограмм используют одинаково поляризованные волны, когда пространственно модулированное интерференционное поле опорной и сигнальной волн приводит к записи голографических решеток за счет пространственной модуляции оптических параметров фоточувствительной среды (изменение показателя преломления и (или) коэффициента поглощения). При поляризационной голографической записи опорная и сигнальная волны поляризованы ортогонально друг другу, суммарная интенсивность этих волн остается постоянной, и имеет место только пространственная модуляция состояния поляризации света в соответствии с разностью фаз записывающих голограмму волн [1]. При этом пространственно-переменное состояние поляризации суммарного поля вызывает в среде возникновение пространственной модуляции фотоанизотропии и (или) фотогиротропии [2-4]. Переход к поляризационной записи голограмм позволяет управлять поляризацией дифрагированного излучения, что может быть использовано, например, в системах коррекции лазерного излучения со сложным распределением поляризации по фронту волны [5], а также получать информацию о строении и анизотропных свойствах среды, что имеет перспективы использования в системах поляризационной оптической памяти [6].

Поляризационная запись динамических голограмм в растворах сложных органических соединений (красителей) возможна вследствие наведенной анизотропии поглощения среды. При этом эффект насыщения поглощения приводит к проявлению нелинейностей пятого и более высоких порядков, определяющих возможность реализации нелинейной голографической записи и многоволновых процессов [7–9]. Многоволновые взаимодействия на основе нелинейных динамических голограмм, в свою очередь, позволяют реализовать управление в реальном времени структурой оптических вихрей, при этом становится возможным преобразование их волнового фронта [10], топологической структуры [11], а также частоты несущей волны [12].

В настоящей работе проведен теоретический анализ процессов преобразования топологической и поляризационной структур оптических вихрей в схеме записи и считывания пропускающих динамических поляризационных голограмм, а также приведены результаты экспериментальных исследований закономерностей преобразования сингулярных пучков при реализации поляризационного четырехволнового взаимодействия (ЧВВ).

## ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ

Рассмотрим задачу воздействия высокоинтенсивного поляризованного лазерного излучения на резонансную среду, учитывающую два энергетических состояния (основное и возбужденное). Предположим, что световой пучок E распространяется вдоль оси z и является линейно поляризованным вдоль оси x. Исходя из кинетических уравнений для населенностей основного ( $n_1$ ) и возбужденного ( $n_2$ ) энергетических уровней [13] можно получить стационарные функции распределения в единице телесного угла  $\Omega$ , зависящие от интенсивности излучения I и угла  $\theta$  между электрическим вектором E и дипольным моментом молекул D:

$$n_{\rm l}(I,\Omega) = \frac{1}{8\pi} \frac{2 + 3\alpha I \cos^2 \theta}{1 + 3\alpha I \cos^2 \theta},\tag{1}$$



**Рис. 1.** Схема формирования объемной поляризационной голограммы опорным гауссовым и сигнальным сингулярным световыми пучками.

$$n_2(I,\Omega) = \frac{1}{8\pi} \frac{3\alpha I \cos^2 \theta}{1 + 3\alpha I \cos^2 \theta},$$
 (2)

где коэффициент  $\alpha = (B_{12} + B_{21}) / v p_{21}$  определяет интенсивность насыщения резонансного перехода ( $I_{\text{нас}} = \alpha^{-1}$ ),  $B_{12,21}$  – коэффициенты Эйнштейна для вынужденных переходов,  $P_{21}$  – суммарная вероятность спонтанных и безызлучательных переходов,  $v = c/n_0$  – скорость света в среде с показателем преломления  $n_0$ .

Для описания нелинейного отклика ансамбля двухуровневых частиц используем формализм комплексного показателя преломления  $\hat{n} = n + i\kappa$ . Коэффициенты экстинкции среды вдоль оси поляризации *x* и перпендикулярной ей оси *y* определяются следующими выражениями:

$$\kappa^{(x,y)} = \int \kappa^{(x,y)}(\Omega) d\Omega = \iint \kappa^{(x,y)}(\theta,\phi) \sin\theta d\theta d\phi, \quad (3)$$

где функции

$$\kappa^{(x,y)}(\theta,\phi) = (\hbar c N/2v) (n_1 - n_2) b^{(x,y)}(\theta,\phi)$$

определяют вклад в коэффициент экстинкции частиц, ориентированных в единичном телесном угле  $\Omega$ . При этом используются дифференциальные коэффициенты Эйнштейна для вынужденных переходов

$$b^{(x)}(\theta,\phi) = 3B\sin^2\theta\cos^2\phi,$$
$$b^{(y)}(\theta,\phi) = 3B\sin^2\theta\sin^2\phi,$$

 $B_{12} = B_{21} \equiv B$  для совпадающих контуров поглощения и люминесценции. Интегрируя (3) по всем углам  $\theta$  и  $\phi$ , получаем следующие выражения для коэффициентов экстинкции среды вдоль оси поляризации *x* и перпендикулярной ей оси *y*:

$$\kappa^{(x)} = 3\kappa_0 \left[ \frac{1}{3\alpha I} - \frac{\operatorname{arctg}\sqrt{3\alpha I}}{(3\alpha I)^{3/2}} \right],\tag{4}$$

$$\kappa^{(y)} = \frac{3}{2}\kappa_0 \left[ -\frac{1}{3\alpha I} + \left( \frac{1}{\sqrt{3\alpha I}} + \frac{1}{(3\alpha I)^{3/2}} \right) \arctan \sqrt{3\alpha I} \right], (5)$$

где  $\kappa_0$  — не зависящий от интенсивности (линейный) коэффициент экстинкции.

Вычислим анизотропию коэффициента экстинкции  $(\kappa_x - \kappa_y)/\kappa_0$  при малой интенсивности светового пучка ( $\alpha I \ll 1$ ), используя при этом разложение  $\operatorname{arctg}\sqrt{3\alpha I} \sim \sqrt{3\alpha I}(1 - \alpha I)$ :

$$\left(\kappa_x - \kappa_y\right)/\kappa_0 = 3\alpha I/2. \tag{6}$$

Аналогично можно рассчитать анизотропию показателя преломления двухуровневой резонансной среды под действием интенсивного поляризованного излучения:

$$(n_x - n_y)/\kappa_0 = 3\Theta \alpha I/2B, \tag{7}$$

где функция  $\Theta(\omega)$  связана соотношением Крамерса-Кронига с коэффициентом Эйнштейна для вынужденных переходов  $B(\omega)$ . Таким образом, при интенсивности светового пучка, много меньшей интенсивности насыщения резонансного перехода, данная модель описывает эффекты светоиндуцированной анизотропии коэффициента поглощения и показателя преломления в приближении кубической нелинейности.

Рассмотренная модель взаимодействия высокоинтенсивного линейно поляризованного излучения с нелинейной первоначально изотропной средой была применена для описания процесса преобразования пространственной и топологической структур вихревых оптических пучков при записи и считывании поляризационных динамических голограмм. Будем полагать, что частота ω записывающих динамическую голограмму световых пучков  $\mathbf{E}_1$  и  $\mathbf{E}_S$ , а также считывающего пучка  $\mathbf{E}_2$  близка к центру полосы поглощения  $S_0 - S_1$ раствора красителя. Опорный пучок Е<sub>1</sub> с гауссовым распределением интенсивности в поперечном профиле и сигнальный сингулярный световой пучок Е с пересекаются в объеме нелинейной среды под небольшим углом β, а считывающий гауссов пучок Е<sub>2</sub> распространяется точно навстречу пучку  $E_1$  (рис. 1).

ОПТИКА И СПЕКТРОСКОПИЯ том 115 № 3 2013

Ограничим рассмотрение случаем линейной взаимно ортогональной поляризации опорного и сигнального пучков ( $\mathbf{E}_1 \parallel \mathbf{x}, \mathbf{E}_S \parallel \mathbf{y}$ ), полагая при этом, что поляризация считывающего динамическую голограмму пучка совпадает с поляризацией опорного ( $\mathbf{E}_2 \parallel \mathbf{E}_1$ ). В этом случае суммарное поле световых волн можно представить в виде

$$\mathbf{E} = \mathbf{E}_{1} + \mathbf{E}_{S} = \frac{1}{2} [\mathbf{e}_{1} E_{1x} \exp i (\mathbf{k}_{1} \mathbf{r} - \omega t + \varphi_{1}) + \mathbf{e}_{2} E_{Sy} \exp i (\mathbf{k}_{S} \mathbf{r} - \omega t + \varphi_{S}) + \kappa.c.],$$
(8)

где  $\mathbf{e}_1$ ,  $\mathbf{e}_2$  — единичные векторы вдоль осей *x* и *y* соответственно,  $\mathbf{k}_1$  и  $\mathbf{k}_S$  — волновые векторы опорной и сигнальной волн.

Преобразуем выражение (8) к виду

$$\mathbf{E} = \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} = \begin{bmatrix} p_x \cos \omega t + q_x \sin \omega t \\ p_y \cos \omega t + q_y \sin \omega t \\ 0 \end{bmatrix},$$
(9)

где

$$p_x = E_{1x} \cos(\mathbf{k}_1 \mathbf{r} + \varphi_1), \quad q_x = E_{1x} \sin(\mathbf{k}_1 \mathbf{r} + \varphi_1),$$
$$p_y = E_{Sy} \cos(\mathbf{k}_S \mathbf{r} + \varphi_S), \quad q_y = E_{Sy} \sin(\mathbf{k}_S \mathbf{r} + \varphi_S).$$

При этом мы положили  $E_z \approx 0$ , что является обоснованным приближением при малых углах схождения световых пучков  $2\beta < 5^{\circ}$  [3]. Используя выражения (9), можно определить состояние поляризации суммарного поля в каждой точке пространства в области перекрытия световых пучков  $E_1$  и  $E_S$ . Так, выражения для параметров эллипса поляризации суммарного поля (квадратов большой и малой полуосей  $a^2$ ,  $b^2$ , а также угла наклона  $\gamma$  между большой полуосью и осью Ox) в плоскости xOy имеют [3] вид

$$a^{2} = \frac{1}{2}(I_{1} + I_{S}) + \frac{1}{2}\sqrt{(I_{1} + I_{S})^{2} - 4I_{1}I_{S}\sin^{2}[(\mathbf{k}_{1} - \mathbf{k}_{S})\mathbf{r} + \varphi_{1} - \varphi_{S}]},$$
(10)

$$b^{2} = \frac{1}{2}(I_{1} + I_{S}) - \frac{1}{2}\sqrt{(I_{1} + I_{S})^{2} - 4I_{1}I_{S}\sin^{2}[(\mathbf{k}_{1} - \mathbf{k}_{S})\mathbf{r} + \varphi_{1} - \varphi_{S}]},$$
(11)

$$\sin 2\gamma = \frac{2\sqrt{I_1I_s}\cos\left[\left(\mathbf{k}_1 - \mathbf{k}_s\right)\mathbf{r} + \varphi_1 - \varphi_s\right]}{a^2 - b^2}, \quad (12)$$
$$\cos 2\gamma = (I_1 - I_s)/(a^2 - b^2).$$

3 ОПТИКА И СПЕКТРОСКОПИЯ том 115 № 3 2013



**Рис. 2.** Пространственные профили опорного (а) и сигнального (б) световых пучков на границе z = 0, волновой фронт сигнального пучка (в), распределения азимута наклона (г) и отношения полуосей (д) эллипса поляризации динамической решетки.

Рассмотрим пространственные распределения параметров эллипса поляризации суммарного светового поля, приняв в качестве опорного  $E_1$  пучок с плоским волновым фронтом и гауссовым распределением интенсивности (рис. 2а):

$$E_{1x}(z = 0, r, \varphi) = E_{10} \exp[-(r/\sqrt{2r_{01}})^2],$$

а в качестве сигнального — вихревой пучок  $E_s$  с фазовой дислокацией топологического заряда *m* (рис. 26, 2в):

$$E_{Sy}(z=0,r,\varphi) = E_{S0}[r/r_0]^{|m|} \exp[-(r/\sqrt{2}r_{0S})^2 + im\varphi].$$

Для обеспечения эффективного перекрытия пучков в объеме среды полуширина опорного пучка была выбрана в два раза большей, чем у сигнального ( $r_{01} = 2r_{0S}$ ). На рис. 2г, 2д представлены рассчитанные по формулам (10)-(12) пространственные распределения азимута наклона у  $(\pi/2 \ge \gamma \ge -\pi/2)$  и отношения полуосей ( $\delta =$  $= \pm \operatorname{arctg}(b/a), \pi/2 \ge \delta \ge -\pi/2)$  эллипса поляризации суммарного светового поля на границе среды z = 0, принимающие все возможные значения от минимума (черный цвет) до максимума (белый цвет). Видно, что в области перекрытия световых пучков формируются пространственно-периодические распределения параметров эллипса поляризации суммарного светового поля, причем решетка эллиптичности характеризуется удвоенной пространственной частотой по отношению к решетке азимута угла наклона эллипса поляризации. Наличие в поляризационных картинах вилообразных дислокаций, характерных для интерферограмм интенсивности сингулярных световых пучков [10], объясняется неопределенностью фазы в центре сигнального пучка  $\mathbf{E}_{S}$ .



**Рис. 3.** Схема экспериментальной установки для реализации ЧВВ гауссовых и сингулярных световых пучков.

Таким образом, анализ структуры пространственного распределения поляризации суммарного поля опорного и сигнального световых пучков позволяет сделать вывод о том, что в средах с фотоанизотропией в рассмотренной геометрии возможна запись поляризационных голограмм, содержащих информацию о топологической структуре оптических вихрей.

При встречном направлении распространения считывающей волны

$$\mathbf{E}_2 = (1/2) \left[ \mathbf{e}_1 E_{2x} \exp i \left( \mathbf{k}_2 \mathbf{r} - \omega t + \varphi_2 \right) + \kappa.c. \right]$$

и выполнении условия фазового синхронизма  $\mathbf{k}_D = \mathbf{k}_1 - \mathbf{k}_S + \mathbf{k}_2$  в среде с кубической нелинейностью индуцируется поляризация  $\mathbf{P}_{\rm HR} \sim \mathbf{e}_2 \chi^{(3)} E_1 E_2 E_S^*$ . В приближении малой дифракционной эффективности с учетом выражений (6), (7) для наведенной анизотропии уравнение для комплексной амплитуды дифрагированной волны  $\mathbf{E}_D$  может быть записано в виде

$$\left(\frac{\partial}{\partial z} + \beta \frac{\partial}{\partial x} + \frac{\Delta_{\perp}}{2ik}\right) \mathbf{E}_{D} = -i \frac{k_{0}}{2} \mathbf{e}_{2} \frac{3\hat{\Theta}}{8B} \alpha' E_{1} E_{2} E_{S}^{*}.$$
 (13)

В данном уравнении  $\Delta_{\perp} = \partial^2 / \partial x^2 + \partial^2 / \partial y^2$  – поперечный лапласиан,  $k = \omega n_0 / c$  – волновое число,  $k_0$  – линейный коэффициент поглощения среды,  $\hat{\Theta}(\omega) = \Theta(\omega) + iB(\omega)$ ,  $\alpha' = \alpha c n_0 / 8\pi$ .

Как следует из анализа уравнения (13), дифрагированная волна  $\mathbf{E}_D$  распространяется точно навстречу сигнальной волне  $\mathbf{E}_S$  и имеет такую же поляризацию ( $\mathbf{E}_D \parallel \mathbf{y}$ ). При этом использование плоских опорной  $\mathbf{E}_1$  и считывающей  $\mathbf{E}_2$  волн  $(\phi_1 + \phi_2 = \text{const})$  позволяет реализовать эффект обращения волнового фронта, при котором фаза дифрагированной волны  $\mathbf{E}_D$  формируется обратной к фазе сигнальной волны  $\mathbf{E}_S$  ( $\phi_D = -\phi_S$ ). В случае, когда сигнальный пучок  $\mathbf{E}_S$  характеризуется наличием топологического заряда *m*, обращенный световой пучок  $\mathbf{E}_D$  должен содержать топологический заряд обратного знака *-m*.

## ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Экспериментально ЧВВ поляризованных гауссовых и сингулярных световых пучков исследовалось при записи пропускающих динамических голограмм в схеме попутного распространения опорного и сигнального пучков в растворе красителя родамин 6Ж. Схема экспериментальной установки представлена на рис. 3. Лазер на алюмоиттриевом гранате 1 (расходимость светового пучка  $\theta_{0.5} \le 2$  мрад, длительность импульса  $\tau =$ = 20 нс) работал в режиме генерации второй гармоники излучения ( $\lambda = 532$  нм). Опорная **E**<sub>1</sub> и сигнальная Е<sub>S</sub> волны формировались светоделителем 2 и зеркалами 4, 5. Для согласования оптической длины пути сигнальной и опорной волн использовалась линия задержки 6. Для получения сигнального светового пучка с винтовой дислокацией волнового фронта использовались компьютерно синтезированные транспаранты 7, записанные в слоях полиметилметакрилата, содержащего фенантренхинон [14]. Сингулярный пучок направлялся в кювету 10 с этанольным раствором красителя родамин 6Ж под небольшим углом к опорной волне с помощью зеркала 8. Считывающая волна E<sub>2</sub> направлялась в кювету с раствором красителя точно навстречу опорной волне Е1 с помощью подвижного зеркала 3. Малый угол  $(2\beta \approx 30 \text{ мрад})$  между направлениями распространения опорной и сигнальной волн и поперечные размеры пучков (*r*<sub>10</sub> = 250 мкм и *r*<sub>S0</sub> = 75–150 мкм) обеспечивали эффективное пространственное перекрытие взаимодействующих световых пучков в кювете с раствором красителя. Для выделения дифрагированного пучка использовались полупрозрачное зеркало 9 и диафрагма 11. Пространственные профили интенсивности световых пучков регистрировались с помощью ССД-камеры, размещенной на выходе интерферометра Маха-Цендера 12, позволяющего получать интерференционные картины для сигнального и дифрагированного световых пучков и идентифицировать их топологическую структуру. Поляризация взаимодействующих волн изменялась посредством внесения в сигнальный пучок полуволновой фазовой пластинки 13, а состояние поляризации обращенной волны анализировалось с помощью призмы Глана 14. При проведении эксперимента

ОПТИКА И СПЕКТРОСКОПИЯ том 115 № 3 2013

также отслеживался вид пространственного распределения и топологическая структура обращенной волны. Для регистрации пространственного распределения пучка одно из плеч интерферометра Маха-Цендера перекрывалось, и на камеру поступал только один пучок.

Результаты экспериментального исследования ЧВВ в этанольном растворе красителя родамин 6Ж представлены на рис. 4, где приведены изображения пучков, полученные в эксперименте (левая колонка), а также соответствующие им интерферограммы (правая колонка), подтверждающие наличие топологического заряда.

На начальном этапе все взаимодействующие волны имели одинаковую поляризацию - вертикальную, что соответствовало стандартной схеме ЧВВ. Изображения на рис. 4а', 4а" соответствуют сигнальному пучку Е<sub>s</sub>. В данном случае в качестве сигнального использовался сингулярный пучок с топологическим зарядом m = 1, что подтверждается интерферограммой, в которой, как и следует из вида используемой для регистрации заряда схемы, добавляются две интерференционные полосы. Дифрагированный пучок Е<sub>р</sub> (рис. 46', 46") также был вертикально поляризован и содержал топологический заряд, по модулю равный заряду сигнального пучка. Отметим, что обращение волнового фронта сингулярного пучка, реализующееся при стандартных схемах ЧВВ, приводит к инверсии знака топологического заряда [10], однако для подтверждения данного факта необходимо регистрировать интерферограммы сигнального и дифрагированного пучков не с плоским волновым фронтом, а со сферическим [12].

Путем внесения в сигнальный пучок фазовой пластинки λ/2 была реализована схема записи поляризационной голограммы линейно поляризованными во взаимно ортогональных плоскостях опорным гауссовым и сигнальным сингулярным световыми пучками, аналогичная представленной на рис. 1. Полученные изображения дифрагированного пучка Е<sub>р</sub> и соответствующая интерферограмма представлены на рис. 4в', 4в". Поляризация дифрагированного пучка совпадала с поляризацией сигнального пучка. Помещая полуволновую фазовую пластинку поочередно в опорный и считывающий гауссовы световые пучки, были также получены и другие возможные комбинации ортогональной поляризации взаимодействующих волн. Интерферограммы, полученные при этом, показывают, что при любой комбинации поляризаций взаимодействующих волн топологический заряд, внесенный в сформированную динамическую голограмму, передается обращенной волне и по модулю равен заряду сигнальной волны  $E_s$ .

ОПТИКА И СПЕКТРОСКОПИЯ том 115 № 3 2013



**Рис. 4.** Пространственные профили и интерферограммы сигнального сингулярного пучка с топологическим зарядом m = 1 (а) и дифрагированных пучков при одинаковой (б) и ортогональной (в) поляризациях опорного и сигнального пучков.

В заключение отметим, что исследованный в настоящей работе метод записи и считывания поляризационных динамических голограмм в средах с фотоиндуцированной анизотропией коэффициента поглощения и показателя преломления открывает дополнительные возможности управления структурой сингулярных световых пучков, что может найти применение, например, при реализации математических операций с использованием в качестве логических единиц топологического заряда оптических вихрей и их состояния поляризации.

Работа частично поддержана Белорусским республиканским фондом фундаментальных исследований в рамках проекта Ф11К-136.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Какичашвили Ш.Д.* // Опт. и спектр. 1972. Т. 33. В. 3. С. 324.
- 2. Ebralidze T.D. // Appl. Opt. 1995. V. 34. P. 1357.
- 3. *Huang T., Wagner K.H.* // IEEE J. Quantum Electron. 1995. V. 31. P. 372.
- 4. Xu M., de Boer D.K.G., van Heesch C.M., Wachters A.J.H., Urbach H.P. // Opt. Expr. 2010. V. 18. № 7. P. 6703.

- 5. *Тарасашвили В.И., Пурцеладзе А.Л. //* Опт. и спектр. 2007. Т. 103. № 6. С. 1046–1049.
- Nikolova L., Todorov T. // J. Mod. Opt. 1984. V. 31. P. 579.
- 7. Blouin A., Denariez-Roberge M.M. // IEEE J. Quant. Electron. 1993. V. 29. P. 227.
- Arce Diego J.L., Fanjul Velez F., Pereda Cubian D., Tolstik A.L., Romanov O.G., Ormachea O. // Proc. SPIE. 2005. V. 5710. P. 159.
- 9. Карпук С.М., Рубанов А.С., Толстик А.Л. // Опт. и спектр. 1996. Т. 80. № 2. С. 313.
- 10. Романов О.Г., Толстик А.Л. // ЖПС. 2009. Т. 76. № 3. С. 395.
- 11. Романов О.Г., Толстик А.Л. // Опт. и спектр. 2008. Т. 105. № 5. С. 825.
- 12. Романов О.Г., Горбач Д.В., Толстик А.Л. // Опт. и спектр. 2010. Т. 108. № 5. С. 812.
- Степанов Б.И., Грибковский В.П. Введение в теорию люминесценции. Минск: Изд. АН БССР, 1963. 444 с.
- 14. *Mahilny U.V., Marmysh D.N., Tolstik A.L., Matusevich V., Kowarschik R. // J. Opt. A. 2008. V. 10. № 8. P. 085302.*