Проиллюстрируем метод на примере

$$\alpha^{0} = \varphi(x^{0}(10)) = \min \varphi(x(10)); \quad \dot{x}_{1} = x_{2}, \quad \dot{x}_{2} = -x_{1} + u, \quad x_{1}(0) = 10,$$

$$x_{2}(0) = -10, \quad |u(t)| \le 1, \quad t \in T = [0, \ 10], \quad \varphi(x) = x_{1}^{2} + x_{2}^{2}.$$
(7)

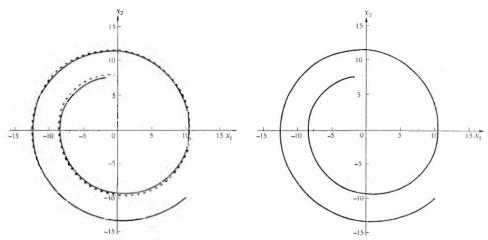


Рис. 1. Проекции траекторий задачи (7) на фазовую плоскость x_1x_2 при m=3

Рис. 2. Проекции траекторий задачи (7) на фазовую плоскость x_1x_2 при m=12

Решив кусочно-линейную аппроксимацию задачи (7) в классе дискретных управлений с h=0,1, получили $\alpha_{m=3}^0$ =7,913822; $\alpha_{m=12}^0$ =7,648144 и определили нули коуправления {2,617; 5,712; 8,9} $_{m=3}$; {2,358; 5,499; 8,641} $_{m=12}$. После процедуры доводки α^0 =7,64635, нули коуправления – {2,376; 5,518; 8,659}. Результаты показаны на рисунках: рис. 1 соответствует m=3 (пунктирной линией изображена фазовая траектория кусочно-линейной аппроксимации задачи (7), сплошной – оптимальная траектория задачи (7)); рис. 2 соответствует m=12 (траектории практически совпали).

- 1. Габасов Р., Кириллова Ф. М. Оптимизация линейных систем. Мн., 1973.
- 2. Габасов Р., Кириллова Ф.М., Костюкова А.И., Раксцкий В.М. Конструктивные методы оптимизации: В 5 ч. Ч. 4. Выпуклые задачи. Мн., 1987.
- 3. Химмельблау Д. Прикладное нелинейное программирование. М., 1975.

Поступила в редакцию 06.12,2002,

Татьяна Георгиевна Хомицкая – аспирант кафедры методов оптимального управления. Научный руководитель – доктор физико-математических наук, профессор Р. Габасов.

УДК 519.24

С.Л. ЧЕХМЕНОК

О ВЫЧИСЛЕНИИ ПЛОТНОСТИ И ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ СТРОГО СИММЕТРИЧНЫХ УСТОЙЧИВЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

In this article an algorithm of calculating a density and a function of distribution for symmetric stable random values is constructed.

Пусть задано некоторое фиксированное значение $x \in R$, в котором нужно вычислить значение плотности и функции распределения вероятностей

строго симметричной устойчивой случайной величины ξ . Из [1] известно, что плотность симметричного устойчивого закона задается равенством

$$p(x) = \frac{1}{\pi} \int_{0}^{+\infty} \cos(xt)e^{-ct^{\alpha}} dt, \tag{1}$$

где α и c — параметры устойчивого распределения, $\alpha \in (0; 2]$, c>0. Построим алгоритм вычисления плотности распределения в заданной точке x. Поскольку p(-x)=p(x), то достаточно рассмотреть случай, когда $x\geq 0$. Зафиксируем значение $x\in R$, $x\geq 0$, в котором требуется вычислить значение плотности распределения устойчивого закона. Представим первый сомножитель под интегралом (1) в виде $\cos(xt)=1+\cos(xt)-1$, тогда $p(x)=S_1+S_2$, где

$$S_1 = \int_0^\infty (1 + \cos(xt))e^{-t} f(t)dt,$$

$$S_2 = \int_0^\infty e^{-t} f(t)dt,$$
(2)

а $f(t) = \frac{1}{\pi} e^{t-ct^{at}}$. Для вычисления интегралов S_1 и S_2 воспользуемся квадратур-

ными формулами наивысшей алгебраической степени точности (НАСТ), которые, согласно [2], строятся в виде

$$S_j = \sum_{i=1}^{n+1} A_i f(t_i), \ j = \overline{1, 2},$$
 (3)

где n=0, 1, 2, ... – некоторое фиксированное число, определяющее алгебраическую степень точности, A_i – некоторые коэффициенты, t_i – узлы, в которых вычисляются значения функции f(t).

Рассмотрим S_1 . Для данного интеграла коэффициенты A_i , $i=\overline{1,n+1}$, вычисляются по формуле

$$A_{i} = \int_{0}^{\infty} (1 + \cos(xt))e^{-t} \frac{\prod_{j=1, j \neq i}^{n+1} (t - t_{j})}{\prod_{j=1, j \neq i}^{n+1} (t_{i} - t_{j})} dt,$$
(4)

где узлы t_i , i=1,n+1, являются корнями многочлена

$$\omega(t) = t^{n+1} + a_1 t^n + a_2 t^{n-1} + \dots + a_n t + a_{n+1}, \tag{5}$$

в котором коэффициенты a_i , $i = \overline{1, n+1}$, являются решением системы линейных алгебраических уравнений (СЛАУ) вида

$$\begin{cases} a_1 I(n) + a_2 I(n-1) + \dots + a_{n+1} I(0) = -I(n+1), \\ a_1 I(n+1) + a_2 I(n) + \dots + a_{n+1} I(1) = -I(n+2), \\ \dots \\ a_1 I(2n) + a_2 I(2n-1) + \dots + a_{n+1} I(n) = -I(2n+1), \end{cases}$$
(6)

где значения I(k) для k = 0, 2n + 1 задаются интегралом

$$I(k) = \int_{0}^{+\infty} (1 + \cos(x\tau))e^{-\tau} \tau^{k} d\tau.$$

Построим явную формулу для вычисления интеграла I(k):

$$I(k) = \int_{0}^{+\infty} (1 + \cos (x\tau))e^{-\tau} \tau^{k} d\tau = k! + \int_{0}^{+\infty} \cos (x\tau)e^{-\tau} \tau^{k} d\tau.$$

Из [4] известно, что

$$\int_{0}^{+\infty} e^{i\tau x - \tau} \tau^{k} d\tau = \frac{k!}{(1+x^{2})^{\frac{k+1}{2}}} \left(\cos \left((k+1)\operatorname{arctg}(x) \right) + i \sin \left((k+1)\operatorname{arctg}(x) \right) \right).$$

Следовательно,

$$\int_{0}^{+\infty} \cos (x\tau) e^{-\tau} \tau^{k} d\tau = \operatorname{Re} \int_{0}^{+\infty} e^{i\tau \tau - \tau} \tau^{k} d\tau = \frac{k! \cos ((k+1)\operatorname{arctg} (x))}{(1+x^{2})^{\frac{k+1}{2}}}.$$

Таким образом, для вычисления интеграла S_1 нужно вычислить коэффициенты A_i , $i=\overline{1,n+1}$, по формуле (4), в которой a_i , $i=\overline{1,n+1}$, являются решением СЛАУ вида (6) и t_i , $i=\overline{1,n+1}$, являются корнями многочлена (5).

Рассмотрим слагаемое S_2 . Для вычисления данного интеграла воспользуемся квадратурными формулами НАСТ, которые основаны на системе ортогональных многочленов Якоби с весовой функцией e^{-t} . Для данной системы многочленов коэффициенты A_t и значения t_i для формулы (3) табули-

рованы [3]. Следовательно, $S_2 \approx \sum_{i=1}^{n+1} A_i f(t_i)$, где коэффициенты A_i и значения t_i находятся из [3] для заданного значения n.

Рассмотрим вычисление функции распределения в заданной точке x. Функция распределения может быть записана в виде

$$F(x) = \int_{-\infty}^{x} p(y)dy = \frac{1}{\pi} \int_{-\infty}^{x} \int_{0}^{+\infty} \cos(yt)e^{-ct^{\alpha}}dtdy.$$

Поскольку распределение является симметричным, то F(0)=0,5. Следовательно,

$$F(x) = 0.5 + \frac{1}{\pi} \int_{0}^{+\infty} \int_{0}^{x} \cos(yt)e^{-ct^{\alpha}} dy dt = 0.5 + \frac{1}{\pi} \int_{0}^{+\infty} \frac{\sin(xt)}{t} e^{-ct^{\alpha}} dt.$$

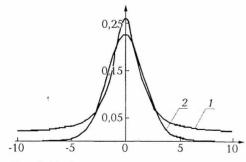


Рис. 1. Графики плотности распределения: I – при α =1,8; c=1,5; 2 – при α =1,4, c=1,2

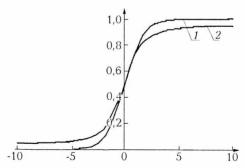


Рис. 2. Графики функции распределения: $I - \text{при } \alpha = 1,8; c = 1,0; 2 - \text{при } \alpha = 1,1; c = 1,1$

Вычислим интеграл $\frac{1}{\pi}\int\limits_0^{+\infty} \frac{\sin{(xt)}}{t} e^{-ct^u} dt$. Представим первый сомножи-

тель в виде
$$\frac{\sin (xt)}{t} = \frac{xt + \sin (xt)}{t} - x$$
. Тогда $\frac{1}{\pi} \int_{0}^{+\infty} \frac{\sin (xt)}{t} e^{-ct^{\alpha}} dt = S_3 - xS_2$,

где
$$S_3 = \int\limits_0^\infty \frac{xt+\sin xt}{t}e^{-t}f(t)dt$$
, а S_2 определяется формулой (2).

Для вычисления S_3 воспользуемся приведенным алгоритмом для S_1 , только вместо весовой функции $(1+\cos(xt))e^{-t}$ возьмем функцию $\frac{xt+\sin xt}{t}e^{-t}$. То-

гда I(k) при $k \ge 1$ вычисляется по формуле

$$I(k) = \int_{0}^{\infty} \frac{x\tau + \sin x\tau}{\tau} e^{-\tau} \tau^{k} d\tau = xk! + \frac{(k-1)!\sin((k)\arctan(x))}{(1+x^{2})^{\frac{k}{2}}}.$$

При k=0 $I(0)=4\pi$. Графики плотности распределения при некоторых параметрах приведены на рис. 1, функции распределения — на рис. 2.

- 1. Золотарев В. М. Одномерные устойчивые распределения. М., 1983.
- 2. Крылов В.И., Бобков В.В., Монастырный П.И. Приближенное вычисление интегралов. Мн., 1968.
- 3. Крылов В.И., Кругликова Л.Г. Справочная книга по численному интегрированию. Мн., 1967.
- 4. Дзядык В. К. Введение в теорию равномерного приближения функций полиномами. М., 1977.

Поступила в редакцию 10.12.2002.

Сергей Леопидович Чехменок – аспирант кафедры информационного и программноматематического обеспечения автоматизированных производств. Научный руководитель – кандидат физико-математических наук, доцент Н.Н. Демеш.

УДК 519.10

В.А. ЕМЕЛИЧЕВ, К.Э. КОВАЛЕНКО

КРИТЕРИЙ КВАЗИУСТОЙЧИВОСТИ ВЕКТОРНОЙ КОМБИНАТОРНОЙ ЗАДАЧИ С ЧАСТНЫМИ КРИТЕРИЯМИ ВИДА MINMIN MODUL

Necessary and sufficient conditions of quasi-stability of multi-objective (vector) problem of discrete optimization with Pareto principle of optimality and non-linear partial criteria are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the multi-valued mapping that establishes the choice function.

Изучению различных аспектов устойчивости скалярных и векторных задач дискретной оптимизации посвящен ряд публикаций (см., например, [1–5]). Настоящая работа продолжает начатые в [5–8] исследования условий квазиустойчивости векторных задач дискретной оптимизации в случае нелинейных частных критериев. Здесь для векторных траекторных задач с частными критериями вида MINMIN MODUL приводятся необходимые и достаточные условия того типа устойчивости, который можно интерпретировать как дискретный аналог свойства полунепрерывности снизу точечномножественного отображения, задающего принцип оптимальности Парето. Ранее подобные результаты были получены в [6–8] для векторных задач с частными критериями вида MINSUM, MINMAX и MINMAX MODUL.

Под n-критериальной траекторной задачей $Z^n(A)$ будем понимать задачу поиска множества Парето (множества эффективных решений):

$$P^{n}(A) = \{ t \in T : P^{n}(t,A) = \emptyset \},$$