
(5) with matrices

A =

(
−0, 9 −6, 5

4, 8 −0, 9

)
, B =

(
−1, 39 −0, 65

0, 48 −1, 39

)
is asymptotically stable if τ ∈ (0, τ1)

⋃
(τ2, τ3), where τ1 = 0, 2862, τ2 =

0, 7141, τ3 = 1, 2142.
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The method of codifferential descent was developed by professor
V.F. Demyanov for solving a large class of nonsmooth nonconvex op-
timization problem in the mid-1990s [1]. Later on, several modifications
of this method designed specifically for solving convex and d.c. opti-
mization problems were proposed [2–4].

Recall that a function f : Rd → R is called codifferentiable [1] at a
point x ∈ Rd, if there exist compact convex sets df(x), df(x) ⊂ Rd+1

such that max(a,v)∈df(x) a = min(b,w)∈df(x) b = 0, and for any ∆x ∈ Rd one
has

f(x+∆x)−f(x) = max
(a,v)∈df(x)

(
a+〈v,∆x〉

)
+ min

(b,w)∈df(x)

(
b+〈w,∆x〉

)
+o(∆x),

where 〈·, ·〉 is the inner product in Rd, and o(α∆x)/α → 0 as α → +0.
The pair Df(x) = [df(x), df(x)] is referred to as a codifferential of f at
x. Clearly, a codifferential of f at x is not unique.

Let a function f : Rd → R be codifferentiable. One can utilize the
method of codifferential descent (MCD) in order to minimize this func-
tion. The scheme of this method is as follows.
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1. Choose µ > 0, α∗ > 0 and x0 ∈ Rd.

2. kth iteration (k ≥ 0).

(a) Compute Df(xk).

(b) For any z = (b, w) ∈ dµf(xk) compute

{(a(z), v(z))} = arg min{‖(a, v)‖
∣∣∣ (a, v) ∈ df(xk) + {z}}.

(c) For any z ∈ dµf(xk) compute

α(z) ∈ arg min{f
(
xk − αv(z)

) ∣∣∣ α ∈ [0, α∗]}.

(d) Compute

zk ∈ arg min{f
(
xk − α(z)v(z)

) ∣∣∣ z ∈ dµf(xk)}.

(e) Define xk+1 = xk − α(zk)v(zk).

Note that at each iteration of the MCD one must perform line search
in several directions. One can verify that at least one of these direc-
tions is a descent direction of the function f , and f(xk+1) < f(xk) for
all k ∈ N. On the other hand, some of these directions might not be
descent directions, i.e. the function f may first increase and then de-
crease in these directions. This interesting feature of the MCD allows it
to “jump over” some points of local minima of the function f , provided
the parameter µ > 0 is sufficiently large (for a particular example of this
phenomenon see [5]). However, no theoretical results on the convergence
of the MCD to a global minimizer of the objective function are known.

In this talk, we will discuss the performance of the MCD in the
case when the function f can be represented as the difference of convex
functions, and a so-called global codifferential of the function f is known.
In particular, we will present new necessary and sufficient conditions for
a global minimum of a d.c. function in terms of codifferential, and point
out their connection with the MCD. With the use of these conditions
one can prove the convergence of the MCD to a global minimum of a d.c.
function. Furthermore, we will show that if the function f is piecewise
affine, then the MCD convergences to a global minimizer of this function
in a finite number of steps.

The reported study was partially suported by RFBF, research project
No. 18-31-00014.
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We consider the motion around the fixed point O of a dynamically
symmetric finned body with mass M 1 in a resisting medium (Fig. 1).
The flow speed V is constant. The fin assembly consists of four identical
blades located symmetrically on the vane. The vane has an axisymmetric
cavity filled with uniform uncompressible liquid with mass M 2.

For sake of simplicity, it is assumed that the cavity center coincides
with the center of mass C of the body. We define the body orientation
by Krylov angles. We introduce a coordination system Cxyz that is the
principal axes of inertia of the mechanical system. We neglect the gravity
and suppose that aerodynamic forces act on blades only. Under these
conditions the body can perform an autorotation with some angular
velocity around the dynamic symmetry axis Ox. The aerodynamic load
is represented using the quasi-steady approach as a sum of drag and lift
forces.

We assume that liquid can perform the uniform vortex motion. Thus,
the state of the filling can be described by the vortex components sat-
isfying the Helmholtz equations. The internal friction between cavity
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