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Consider the linear stationary singularly perturbed system with delay

LSSPSD :

ẋ(t)=A10x(t)+A11x(t−h)+A2y(t), x∈Rn1, y∈Rn2,

µẏ(t)=A30x(t) + A31x(t−h) + A4y(t), t ∈ T =[0, t1],

v(t)=C1x(t)+C2y(t), t ∈ T, v∈Rm,m ≤ n1 + n2,

x (0) = x0, y0(0) = y0, x(θ, µ) = φ(θ), θ ∈ [−h, 0) .

(1)

Here Aij, i = 1, 3, j = 0, 1, Ak, k = 2, 4, Cj, j = 1, 2, are real matrices of
appropriate dimensions; 0 < h is constant delay; x0 ∈ Rn1, y0 ∈ Rn2,
ϕ(θ) are unknown initial vectors and continuous n1-vector-function; µ is
a small parameter, µ ∈ (0, µ0], µ0 � 1. For a fixed µ > 0 denote by

σ(µ) =

{
λ ∈ C : det

(
λEn1

− A10 − A11e
−ph −A2

−A30 − A31e
−ph µλEn2

− A4

)
= 0

}
the spectrum of (1). By the parameters of LSSPSD (1) we define [1] in-
dependent of µ degenerate system (DS) { ˙̄x (t) = As

(
e−ph

)
x̄ (t) , vs (t) =

Cs
(
e−ph

)
x̄ (t) , x̄ (0) = x0, x̄(θ) = φ(θ), θ ∈ [−h, 0)} and boundary layer

system (BLS)
{
dỹ(τ)
dτ = A4ỹ(τ), vf(τ) = C2ỹ(τ), τ = t

µ ∈
[
0, t1µ

]
,

ỹ(0) = y0 − A−1
4 [A30x0 + A31φ(−h)]

}
with the spectrum

σs = {λ ∈ C : det
[
λEn1

− As

(
e−ph

)]
= 0} and

σf = {λ ∈ C : det [λEn2
− A4] = 0}, correspondingly.

On the basis of LSSPSD decoupling transformation in [1] the separa-
tion (at sufficiently small µ) of the LSSPSD (1) spectrum σ(µ) into two
disjoint parts was proved:

the ”fast” part σy(µ) =

{
λ̃i(µ) = 1

µλi(µ) : λi(µ) →
µ→0

λfi ∈ σf
}

and

the ”slow” part σx(µ) =

{
λi(µ) : λi(µ) →

µ→0
λsi ∈ σs

}
.

Let us denote by Σλ (µ) the finite-dimensional system that is the
projection of LSSPSD (1) on the generalized proper subspace, associated
with its eigenvalue λ ∈ σ (µ).
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Definition 1. At the fixed µ ∈ (0, µ0] LSSPSD (1) is spectrally
{x, y}-(x-,y-)observable if any finite-dimensional system Σλ (µ), associ-
ated with the eigenvalues λ ∈ σ (µ) (λ ∈ σx (µ),λ ∈ σy (µ)), is observable.

Theorem 1. If the DS is spectrally observable, i.e.

rank
[
λEn1

− A′s
(
e−λh

)
, C ′s

]
= n1 ∀λ ∈ σs, (2)

then ∃µ∗s > 0 that the LSSPSD (1) is spectrally x-observable for all
µ ∈ (0, µ∗s]. If the BLS is spectrally observable, i.e.

rank
[
λEn2

− A′4, B′2
]

= n2, ∀λ ∈ σf , (3)

then ∃µ∗f > 0 that the LSSPSD (1) is spectrally y-observable for all

µ ∈
(
0, µ∗f

]
. If the conditions (2) and (3) are fulfilled, then LSSPSD (1)

is spectrally {x, y}-observable for all µ ∈ (0, µ̄], µ̄ = min{µ∗s, µ∗f}.
P r o o f . By applying to (1) the spectral observability condition

[2], decoupling transformation [1], taking into account the invariance
of the spectrum and preserving the matrix rank under nondegenerate
transformations, it is determined that LSSPSD (1) is spectrally {x, y}-
observable at a fixed µ > 0 if and only if the condition is satisfied

rank

 λEn1
− As

(
e−λh

)
+O (µ) 0n1×n2

0n2×n1
µλEn2

− A4 +O (µ)

Cs
(
e−λh

)
+O (µ) C2 +O (µ)

 = n1 + n2.

Based on above spectrum σ (µ) properties, with the preserving of the
matrix rank under small perturbations, of (2) follows the fullness of the
last matrix rank ∀λ ∈ σx (µ) and the spectral x-observability of (1),
analogously of (3) follows spectral y-observability of (1), for sufficiently
small µ > 0. Combining, we are convinced of the validity of the statement
regarding the spectral {x, y}-observability.
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This talk is devoted to the stabilization problem for nonlinear control-
affine systems of the form

ẋ = f0(x) +
m∑
j=1

ujfj(x), (1)

where the vector fields f0, f1,..., fm are assumed to be smooth in the
domain D ⊂ Rn, 0 ∈ D, f0(0) = 0, and the dimension of the state vector
x = (x1, x2, ..., xn)

T is strictly less than the dimension of the control
u = (u1, u2, ..., um)T .

We assume that system (1) is small-time locally controllable (STLC)
at x = 0. Under this kind of controllability assumptions (more pre-
cisely, if x = 0 is locally continuously reachable in small time with
small control and (1) satisfies the strong jet accessibility rank condi-
tion (x, u) = (0, 0)), it was shown in [1] that system (1) is locally
smoothly stabilizable in small time by a periodic time-varying feedback
law u = h(x, t), provided that n /∈ {2, 3}. However, the question how to
construct the above controllers remains open in general case. In this pre-
sentation, we propose a control design scheme that allows constructing
the stabilizing feedback laws u = h(x, t), provided that the controllabil-
ity rank condition is satisfied with the iterated Lie brackets up to some
fixed order. Our approach extends the idea of [2] for the class of con-
trol systems with f0 6= 0. These results are applied for the stabilization
of nonholonomic systems and underactuated mechanical systems with
drift.
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