ON IMPULSIVE RELAXATION OF CONTROL CONTINUITY EQUATIONS WITH UNBOUNDED VECTOR FIELDS M.V. Staritsyn

Matrosov Institute for System Dynamics and Control Theory of SB RAS 134 Lermontov str., 664033 Irkutsk, Russia starmaxmath@gmail.com

1. Object of the study. We address a class of control problems for the continuity equation driven by a control-affine vector field:

$$\mu_0 = \vartheta; \quad \partial_t \,\mu_t + \nabla \cdot (\mu_t \, f_t) = 0, \quad t \in \mathfrak{T} \doteq [0, T], \tag{1}$$

where ϑ is a fixed probability measure on \mathbb{R}^n ,

$$t \mapsto f_t(x) \doteq f(x, u(t)), \quad x \in \mathbb{R}^n; \quad f(x, u) = g(x) + H(x)u;$$

 $g: \mathbb{R}^n \to \mathbb{R}^n$ and $H: \mathbb{R}^n \to \mathbb{R}^{n \times m}$ are given vector and matrix functions. As control inputs we admit Borel measurable functions $u(\cdot): \mathfrak{T} \mapsto \mathbb{R}^m$ satisfying the constraint:

$$u(\cdot) \in \mathfrak{U} = \mathfrak{U}(M) \doteq \{ u \in L_{\infty}(\mathfrak{T}, \mathbb{R}^m) \mid ||u||_{L_1(\mathfrak{T}, \mathbb{R}^m)} = M \}.$$
(2)

Here, M > 0 represents the available resource of the guide.

Due to the input-affine structure of the system and the obvious unboundedness of the maps f(x, u(t)) in the pointwise sense, the arcs $t \mapsto \mu_t$ of system (1), (2) can become somehow close to discontinuous measure-valued functions. In view of this, one should not expect the desired compactness of the tube of solutions to (1), (2) in the natural topology. As a consequence of this fact, one looses to guarantee the well-posedness of related optimal control problems.

2. Content of the talk. In our study, we elaborate a constructive relaxation (compactification) of the funnel of solutions to the continuity equation in a coarse topology of the space of measure-valued functions with bounded variation. For this relaxation, we derive a constructive representation in terms of a characteristic measure differential equation (being an impulsive extension of the characteristic ordinary differential equation). Finally, we consider an optimal impulsive control problem of steering the initial distribution to a given target set. For this problem, we prove the existence of a solution.

Our study extends some results from [1] and calls up papers [2, 3]. The work is partially supported by RFBR, grant no. 16-31-60030.

References

- 1. *Pogodaev N.* Optimal control of continuity equations // Nonlinear Differ. Equ. Appl. 2016, DOI 10.1007/s00030-016-0357-2.
- Ambrosio L. Metric space valued functions of bounded variation // Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, S.4. 1990. Vol. 17, No. 3, P. 439–478.
- Ambrosio L., Fusco N., Pallara D. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

GLOBAL OPTIMALITY CONDITIONS AND NUMERICAL METHODS

A.S. Strekalovsky

Matrosov Institute for System Dynamics and Control Theory of SB RAS 134 Lermontov str., 664033 Irkutsk, Russia strekal@icc.ru

1. Problem Statement. Consider the following problem:

$$(\mathfrak{P}): \begin{cases} f_0(x) := g_0(x) - h_0(x) \downarrow \min_x, & x \in S, \\ f_i(x) := g_i(x) - h_i(x) \le 0, & i \in I = \{1, \dots, m\}, \\ f_i(x) := g_i(x) - h_i(x) = 0, & i \in \mathcal{E} = \{m+1, \dots, l\}; \end{cases}$$
(1)

where the functions $g_i(\cdot)$, $h_i(\cdot)$, $i \in \{0\} \cup I \cup \mathcal{E}$, are convex on \mathbb{R}^n , so that the functions $f_i(\cdot)$, $i \in \{0\} \cup I \cup \mathcal{E}$, are the d.c. functions [1–5]. Besides, assume that the set $S \subset \mathbb{R}^n$ is convex and compact.

Furthermore, suppose that the set $Sol(\mathcal{P})$ of global solutions to Problem (\mathcal{P}) and the feasible set \mathcal{F} of Problem (\mathcal{P}) are non-empty. Additionally, in what follows the optimal value $\mathcal{V}(\mathcal{P})$ of Problem (\mathcal{P}) is supposed to be finite:

$$\mathcal{V}(\mathcal{P}) := \inf(f_0, \mathcal{F}) := \inf_x \{ f_0(x) \mid x \in \mathcal{F}) \} > -\infty.$$

Further, we introduce the following penalty function $W(x) := \max\{0, f_1(x), \ldots, f_m(x)\} + \sum_{j \in \mathcal{E}} |f_j(x)|$, and consider the penalized problem as follows:

$$(\mathfrak{P}_{\sigma}): \ \theta_{\sigma}(x) := f_0(x) + \sigma W(x) = G_{\sigma}(x) - H_{\sigma}(x) \downarrow \min_x, \quad x \in S, \qquad (2)$$

where $\sigma \geq 0$ is a penalty parameter, $G_{\sigma}(\cdot)$ and $H_{\sigma}(\cdot)$ can be shown to be convex functions.