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1. Object of the study. We address a class of control problems for
the continuity equation driven by a control-affine vector field:

µ0 = ϑ; ∂t µt +∇ · (µt ft) = 0, t ∈ T
.
= [0, T ], (1)

where ϑ is a fixed probability measure on Rn,

t 7→ ft(x)
.
= f

(
x, u(t)

)
, x ∈ Rn; f(x, u) = g(x) +H(x)u;

g : Rn → Rn and H : Rn → Rn×m are given vector and matrix functions.
As control inputs we admit Borel measurable functions u(·) : T 7→ Rm

satisfying the constraint:

u(·) ∈ U = U(M)
.
= {u ∈ L∞(T,Rm)

∣∣ ‖u‖L1(T,Rm) = M }. (2)

Here, M > 0 represents the available resource of the guide.
Due to the input-affine structure of the system and the obvious un-

boundedness of the maps f
(
x, u(t)

)
in the pointwise sense, the arcs

t 7→ µt of system (1), (2) can become somehow close to discontinu-
ous measure-valued functions. In view of this, one should not expect the
desired compactness of the tube of solutions to (1), (2) in the natural
topology. As a consequence of this fact, one looses to guarantee the
well-posedness of related optimal control problems.

2. Content of the talk. In our study, we elaborate a constructive
relaxation (compactification) of the funnel of solutions to the continuity
equation in a coarse topology of the space of measure-valued functions
with bounded variation. For this relaxation, we derive a constructive
representation in terms of a characteristic measure differential equation
(being an impulsive extension of the characteristic ordinary differential
equation). Finally, we consider an optimal impulsive control problem of
steering the initial distribution to a given target set. For this problem,
we prove the existence of a solution.

Our study extends some results from [1] and calls up papers [2, 3].
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1. Problem Statement. Consider the following problem:

(P) :


f0(x) := g0(x)− h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x)− hi(x) ≤ 0, i ∈ I = {1, . . . ,m},
fi(x) := gi(x)− hi(x) = 0, i ∈ E = {m+ 1, . . . , l};

(1)

where the functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E, are convex on IRn, so
that the functions fi(·), i ∈ {0} ∪ I ∪ E, are the d.c. functions [1–5].
Besides, assume that the set S ⊂ IRn is convex and compact.

Furthermore, suppose that the set Sol(P) of global solutions to Prob-
lem (P) and the feasible set F of Problem (P) are non-empty. Addition-
ally, in what follows the optimal value V(P) of Problem (P) is supposed
to be finite:

V(P) := inf(f0,F) := inf
x
{f0(x) | x ∈ F)} > −∞.

Further, we introduce the following penalty function
W (x) := max{0, f1(x), . . . , fm(x)} +

∑
j∈E
|fj(x)|, and consider the

penalized problem as follows:

(Pσ) : θσ(x) := f0(x) + σW (x) = Gσ(x)−Hσ(x) ↓ min
x
, x ∈ S, (2)

where σ ≥ 0 is a penalty parameter, Gσ(·) and Hσ(·) can be shown to
be convex functions.
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