NECESSARY AND SUFFICIENT CONDITIONS FOR NONDIFFERENTIABLE PROGRAMMING PROBLEMS

M.A. Sadygov

Baku State University 23 Z. Khalilov str., AZ 1148 Baku, Azerbaijan misreddin08@rambler.ru

In the paper, using the classes of $S-(\alpha, \beta, \nu, \delta, \omega)$ and $S-(\beta, \delta)$ locally Lipschitz mappings at the point, higher order necessary and sufficient conditions of the extremum are received for extreme problems in the presence of restrictions.

Introduction. Let X and Y be Banach spaces, $C \subset X, F : X \to Y$, $S : X \to Y, f : X \to \mathbb{R}, \varphi : X \to \mathbb{R}, \alpha > 0, \nu > 0, \beta \ge \alpha \nu, K > 0,$ $\delta > 0, o : \mathbb{R}_+ \to \mathbb{R}_+, \tilde{o} : \mathbb{R}_+ \to \mathbb{R}_+, o(0) = \tilde{o}(0) = 0, \mathbb{R}_+ = [0, +\infty).$ Let's put $B = \{z \in X : ||z|| \le 1\}, B(x, \delta) = \{z \in X : ||z - x|| \le \delta\}.$

Let $o : \mathbb{R}_+ \to \mathbb{R}_+$, where $\lim_{t \downarrow 0} \frac{o(t)}{t} = 0$. The mapping F is said to be $S - (\alpha, \beta, \nu, \delta, o(\beta))$ locally Lipschitz with the constant K at the point $\bar{x} \in X$, if F satisfies the condition

$$\|F(\bar{\mathbf{x}} + \mathbf{x} + \mathbf{z}) - F(\bar{\mathbf{x}} + \mathbf{x}) - S(\mathbf{x} + \mathbf{z}) + S(\mathbf{x})\| \le \le K \|z\|^{\nu} (\|\mathbf{x}\|^{\beta - \alpha\nu} + \|z\|^{\frac{\beta - \alpha\nu}{\alpha}}) + o(\|x\|^{\beta})$$

at $x, z \in \delta B$. If $S(x) \equiv 0$, then the mapping F is said to be $(\alpha, \beta, \nu, \delta, o(\beta))$ locally Lipschitz with the constant K at the point \bar{x} .

We call the mapping $F : X \to Y$ satisfying the condition $\|F(\bar{x}+z) - F(\bar{x}) - S(z)\| \leq K \|z\|^{\beta}$ at $z \in \delta B$, $S - (\beta, \delta)$ locally Lipschitz with the constant K at the point \bar{x} .

If the function $f : X \to \mathbb{R}$ satisfies the condition $f(\bar{x} + z) - f(\bar{x}) - \varphi(z) \leq K ||z||^{\beta}$ at $z \in \delta B$, we call the function $f \varphi - (\beta, \delta)$ locally semi-Lipschitz with the constant K at the point \bar{x} .

If F(x) = f(x), we put $S(x) = \varphi(x)$. Further we consider that S(0) = 0 and $\varphi(0) = 0$. Let's designate $I = \{0, 1, ..., m\}$ and $J = \{1, ..., m\}$.

1. Necessary condition of the higher order. Let X and Y be Banach spaces, $f_i : X \to \mathbb{R}, i \in I, F : X \to Y, C \subset X$.

Let's consider the problem

$$f_0(x) \to \min, \quad f_i(x) \le 0, i = 1, \dots, m, F(x) = 0, \ x \in C.$$
 (1)

If $C \subset X$ is a convex set and $x_0 \in C$, we will designate that $\tilde{C} = int C \bigcup \{x_0\}, S_{\tilde{C}}(x_0) = \bigcup_{\lambda>0} \frac{\tilde{C}-x_0}{\lambda}$ and $T_C(x_0) = cl \bigcup_{\lambda>0} \frac{C-x_0}{\lambda}$.

Theorem 1. If x_0 be the local minimum point in the problem (1), $\beta > 1$, the function f_i satisfy $\varphi_i - (\beta, \delta)$ locally semi-Lipschitz condition with the constant K at the point x_0 , where $i \in I$, $\varphi_i : X \to \mathbb{R}$ sublinear continuous functions at $i \in I$, $f_j(x_0) = 0$ at $j \in J$, the operator F : $X \to Y$ be strictly differentiable at the point x_0 and $F'(x_0)X = Y$, C be a convex set, $intC \neq \emptyset$, then there exist simultaneously non-zero $\alpha_0 \geq 0, \ \alpha_1 \geq 0, \dots, \alpha_m \geq 0$ and $y^* \in Y^*$ such that $\sum_{i=0}^m \alpha_i \varphi_i(x) + \langle y^*, F'(x_0)x \rangle \geq 0$ at $x \in T_C(x_0)$.

Let's put $g_{(a,y)}(x) = \max_{0 \le i \le m} (\varphi_i^1(x) + a_i) + \delta_{T_C(x_0) \cap \Lambda^{-1}(-y)}(x)$, where $\varphi_i^1 : X \to \mathbb{R}, \quad \Lambda x = F'(x_0)x, \quad (a,y) \in \mathbb{R}^{m+1} \times Y$, and $H = \{x \in X : \varphi_i^1(x) \le 0, \ i \in I, \ \Lambda x = 0, \ x \in S_{\tilde{C}}(x_0)\}$.

Theorem 2. If x_0 is the local minimum point in problem (1), $f_i(x_0) = 0$ at $i \in I$, $\beta > 2$, the functions f_i , $i \in I$, satisfy $\varphi_i^1 + \varphi_i^2 - (\beta, \delta)$ locally semi-Lipschitz condition with the constant K at the point x_0 , $\varphi_i^1 : X \to \mathbb{R}$ are sublinear continuous functions at $i \in I$, $\varphi_i^2 : X \to \mathbb{R}$ are positive homogeneous functions of degree 2 and satisfy $(1, 2, 1, \delta, o(2))$ locally Lipschitz condition with the constant K at the zero point at $i \in I$, the mapping $F : X \to Y$ is strictly differentiable at the point $x_0, F'(x_0)X = Y$ and F satisfies $F'(x_0)x + S(x) - (\beta, \delta)$ locally Lipschitz condition with the constant K at the point $x_0, S : X \to Y$ is a positive homogeneous operator of degree 2 and satisfies $(1, 2, 1, \delta, \tilde{o}(2))$ locally Lipschitz condition with the constant K at the zero point, C is a convex set, $\partial g_{(a,y)}^*(0) \neq \emptyset$ at $(a, y) \in \mathbb{R}^{m+1} \times Y$ and $int T_C(x_0) \bigcap Ker \Lambda \neq \emptyset$, then

$$E(h) = \sup(\sum_{i=0}^{m} \lambda_i \varphi_i^2(h) + \langle y^*, S(h) \rangle : \lambda_i \ge 0, \sum_{i=0}^{m} \lambda_i = 1, \ p_i \in \partial \varphi_i^1(0),$$
$$x^* \in N_C(x_0), y^* \in Y^*, \sum_{i=0}^{m} \lambda_i p_i + \Lambda^* y^* + x^* = 0) \ge 0$$

at $h \in H$.

A number of strengthens of Theorem 1 and 2 are also obtained.

Let's note that the strengthening of the condition of Theorem 2 is also a sufficient condition for the local extremum.