Theorem 1. Suppose a controlled object has a description of the
(2) form and there is an analytical description of the control target
(Y (t)) = 0. Then variable control u from (3) occurs and a control
system (2), (3) is asymptotically stable in the mean, with the variables
Y, and (Y (t+ 1)) + Mp(Y (t)) reaching the minimum possible value of
the variance o>.

The report presents the results of comparative modeling of four control
synthesis algorithms for nonlinear objects with different forms of uncer-
tainty in their description. We classify them as classical ACAR under
nonmodel conditions, nonlinear adaptation method [2] and its modifica-
tion, ADARs method.

The reported study was funded by RFBR according to the research
project 17-08-00920.
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X is an Asplund space, A, B C X are closed and 7 € AN B. Na(Z)
and N 4(z) stand for the Fréchet and limiting normal cones to A at z,
respectively.

Definition 1 (Extremality [4]) The pair {A, B} is locally extremal
at T if there exists a p > 0 such that for any € > 0 there are u,v € X
satisfying

(A—u)N(B=-v)NB,(7) =0, max{[lul, [[v]} <e.

Theorem 1 (Extremal principle [4]) If the pair {A, B} is locally ex-
tremal at , then the following two equivalent conditions hold:
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(1) for any e > 0 there ezist points a € ANB.(z), b € BNB.(Z) and
a* € X* such that

la”]l =1, d(a”, Na(a)) <e, d(=a’, Np(b)) <s¢;

(i) for any € > 0 there exist points a € ANB.(z), b € BN B.(z),
a* € Ny(a) and b* € Np(b) such that

lal +110%] =1, [la" + 07| <e. (1)
If, additionally, dim X < oo, then N 4(Z) N (=Np(z)) # {0}.

Definition 2 (Stationarity [2]) (i) The pair {A, B} is stationary
at T if for any € > 0 there exist a p € (0,¢) and u,v € X such that

(A=u) N (B —v)NB,(7) =0, max{[ju],[Jv][} <ep;

(ii) the pair {A, B} is approximately stationary at Z if for any e > 0
there exist p € (0,¢), a € ANB(Z), b € BNB.(Z) and u,v € X
such that

(A—a—u)N(B—-b—v)N(pB) =0, max{|ul,[[v]} <ep. (2)
Local extremality = Stationarity = Approximate stationarity

Theorem 2 (Extended extremal principle [2]) The pair {A, B} is
approzimately stationary at x if and only if the two equivalent conditions
in Theorem 1 hold true.

Theorem 3 (Extension 1 [3]) (i) Ifpointsa € A, b€ B andu,v €
X satisfy conditions (2) with some € > 0 and p > 0, then for any
0 > max{||la—z||, ||b—z| }+p(e+1) there exist points ' € ANBs(Z),
b € BNBs(Z) and a* € Ny(d'), b* € Np(V') satisfying conditions

(1).

(ii)) Ifa€ A, b€ B and a* € Ny(a), b* € Np(b) satisfy conditions (1)
for some € > 0, then for any § > 0 there exists a p € (0,9) and
points u,v € X satisfying conditions (2).
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Theorem 4 (Extension 2 [5]) Suppose AN B = 0. If ||la —b|| <
d(A,B) + ¢ > 0, then, for any A > 0 and 7 € (0,1), there exist points
a € ANBy(a), ' € BNB)(b) and a* € X* such that

la*|| =1, d(a*,Na(a')) +d(—a*, Ng(b')) < e/,
Tl = V|| < {a*,d" = V).

In [1], Theorems 3 and 4 are compared and more extensions are provided.
Acknowledgments. The research was partially supported by the
Australian Research Council, project DP160100854.
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Introduction. Among the modern methods of polynomial synthe-
sis [1-3] the methods related to polynomial families represent a separate
group. The most effective solutions for interval families within the alge-
braic approach were proposed by Kharitonov [4], who offered to consider
four specific polynomials of the family with constant coefficients. In [2]
the frequency criteria of hurwitz robust stability are considered. Root
locus approach is considered in [5].
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