
The system can be described by considering the motion of each par-
ticle independently from each other. We assume that sizes of particles
tend to zero.

The concentration can be considered a small fixed value and the av-
erage distance 1

n between particles can be considered significantly larger

than sizes of particles, i.e. 1
n � 2d.

The following theorem is true.

Theorem 1. The limit distribution of the configuration Gibbs distri-
bution in the Boltzmann-Grad limit (d → 0, n is fixed) which describes
equilibrium state of one-dimensional symmetric system of particles (hard
spheres) is uniform (the speed distribution is the Maxwell one and is un-
changed).
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Introduction. A generalization of the method for analytical design
of aggregated regulators (ADAR) [1], previously developed only for de-
terministic objects, is proposed for a nonlinear object with random un-
certainty in the description.

1. Control problem statement for a discrete deterministic
object in accordance to classical ADAR method. In its statement,
the problem of control on manifolds incorporates a) object of control
specified by a system of ODEs or a system of difference (nonlinear)
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equations for continuous and discrete control problems, respectively; b)
target of control for an analytically defined equation ψ(x) = 0.

ADAR-control will be referred to as the variable uA(x(t)), delivering
a solution to the discrete variational problem

x(t+ 1) = f(x(t); θ) + u(x(t));

J =
m∑
j=1

∞∑
t=0

(ω2
jψ

2
j (x(t)) + ∆ψ2

j (x(t))) → min, (1)

with the restrictions ψ(x) = 0, where x ∈ Rn, u ∈ Rm,m < n are vectors
of states and control, respectively; f ∈ Rn is a nonlinear restricted known
vector-function; θ is a parameters vector; T = {0, 1, 2, ...}. In what
follows, the variational problem will be denoted by a pair of symbols
J, ψ(x) .

2. New statement of control problem for a stochastic ob-
ject based on ADAR ideology. Let a discrete probability space
(Ω,F, (Ft)t≥1,P) with filtration be given, where Ft = σ(ξ(s), s ≤ t and
(ξ(t)t≥1 is a sequence of independent identically distributed random vari-
ables with mean 0 and variance σ2 . Let us discuss an object with a
descrete, most general description

Y (t+ 1) = F (Y (t)) + u(t) + ξ(t+ 1) + cξ(t), (2)

where 0 < c < 1, t ≥ 1,Ft, u(Y (t)) are non-linear function and control,
respectively.

It is required to carry out control in the state space of the object
transferring this object (2) from its given initial state Y (t0) = Y0, t ge1
in the neighborhood of the target manifold ψ(Y (t)) = 0 and minimizing
both the value of mathematical expectation of the quality functional
E(J) from ( ref eqJ) and the variance of quantities Y (t), ψ(Y (t)).

Note that direct application of the classical ADAR method to the
control object (2) is not possible.

3. Problem solution of control construction for a stochastic
object. ADARs method. Then follows the formulation of the main
result for the problem of object (2) stabilization in the neighborhood
of a given value Y ∗ = const. For this purpose we introduce the target
macrovariable as follows Ψ(Y (t)) = Y (t)− Y ∗. Suppose that for t ≥ 1:

u = −F (Y (t)− cξ(t) + Y ∗ − λψ(t). (3)
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Theorem 1. Suppose a controlled object has a description of the
(2) form and there is an analytical description of the control target
ψ(Y (t)) = 0. Then variable control u from (3) occurs and a control
system (2), (3) is asymptotically stable in the mean, with the variables
Y , and ψ(Y (t+ 1)) + λψ(Y (t)) reaching the minimum possible value of
the variance σ2.

The report presents the results of comparative modeling of four control
synthesis algorithms for nonlinear objects with different forms of uncer-
tainty in their description. We classify them as classical ACAR under
nonmodel conditions, nonlinear adaptation method [2] and its modifica-
tion, ADARs method.

The reported study was funded by RFBR according to the research
project 17-08-00920.
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X is an Asplund space, A,B ⊂ X are closed and x̄ ∈ A ∩ B. NA(x̄)
and NA(x̄) stand for the Fréchet and limiting normal cones to A at x̄,
respectively.

Definition 1 (Extremality [4]) The pair {A,B} is locally extremal
at x̄ if there exists a ρ > 0 such that for any ε > 0 there are u, v ∈ X
satisfying

(A− u) ∩ (B − v) ∩ Bρ(x̄) = ∅, max{‖u‖, ‖v‖} < ε.

Theorem 1 (Extremal principle [4]) If the pair {A,B} is locally ex-
tremal at x̄, then the following two equivalent conditions hold:
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