arbitrary normed spaces. As applications of the above results, we introduce, for nonsmooth functions, a new notion of the Demyanov-Rubinov subdifferential at a given point, and show that it generalizes a number of known notions of subdifferentiability, in particular, the Fenchel-Moreau subdifferential of convex functions and the Dini-Hadamard (directional) subdifferential of directionally differentiable functions. Some applications of Demyanov-Rubinov subdifferentials to extremal problems are considered.

The talk develop and improve the results presented earlier in the papers [1-3].

References

- 1. Gorokhovik V.V., Starovoitava M.A. Characteristic properties of primal exhausters for various classes of positively homogeneous functions // Proceedings of the Institute of Mathematics. National Academy of Sciences of Belarus. 2011. Vol. 19. No. 2. P. 12–25. (in Russian)
- 2. Gorokhovik V. V. On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions // Trudy Inst. Mat. Mekh. UrO RAN. 2017. Vol. 23. No. 1. P. 88–102. (in Russian)
- 3. Gorokhovik V. V. Demyanov-Rubinov subdifferentials of real-valued functions // In: Polyakova LN, editor. 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the memory of V.F. Demyanov) (CNSA), Russia, Saint-Petersburg, May 22 27, 2017. Proceedings. Institute of Electrical and Electronics Engineers (IEEE), 2017. P. 122–125. DOI: 10.1109/cnsa.2017.7973962

ASYMPTOTIC STABILITY PROPERTIES OF NON-AUTONOMOUS SYSTEMS WITH PARAMETRIC EXCITATION

V. Grushkovskaya^{1,3}, A. Zuyev^{2,3}

¹ Institute for Systems Theory and Automatic Control, University of Stuttgart
Pfaffenwaldring 9, 70569 Stuttgart, Germany
grushkovskaya@ist.uni-stuttgart.de

² Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstr. 1, 39106 Magdeburg, Germany zuyev@mpi-magdeburg.mpg.de

³ Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, G. Batiuk 19, 84116 Sloviansk, Ukraine

Consider a class of nonlinear systems with time-varying parameters:

$$\dot{x} = f(x, \gamma(t)), \quad t \in \mathbb{R}^+ = [0, +\infty), \tag{1}$$

where $x \in \mathbb{R}^n$ is the state vector, $\gamma : \mathbb{R}^+ \to \bar{\Gamma} \subset \mathbb{R}^m$ is a continuous function, and $f \in C^1(\mathbb{R}^n \times \bar{\Gamma}; \mathbb{R}^n)$. We assume that there exists a function $x^* : \bar{\Gamma} \to \mathbb{R}^n$ such that $f(x^*(\gamma^*), \gamma^*) = 0$ for all $\gamma^* \in \bar{\Gamma}$. Note that, although $x^*(\gamma^*)$ is an equilibrium of system (1) for each fixed γ^* , the function $x^*(\gamma(t))$ is not a solution of (1) in general. In this talk, we propose a novel approach to analyze the asymptotic stability property of system (1) and present sufficient conditions for the convergence of the trajectories of system (1) to a given neighborhood of $x^*(\gamma(t))$. Our approach exploits the concept of stability of a family of sets (cf. [4]).

Definition 1. A family of sets $\mathcal{L} = \{\mathcal{L}_t\}_{t\geq 0} \ (\emptyset \neq \mathcal{L}_t \subset \mathbb{R}^n)$ is said to be globally uniformly asymptotically stable for (1) if:

- for each $\varepsilon > 0$, there is a $\delta > 0$ such that, for all $t_0 \in \mathbb{R}^+$, if $x^0 \in B_{\delta}(\mathcal{L}_{t_0})$ then $x(t) \in \mathcal{B}_{\varepsilon}(\mathcal{L}_t)$ for all $t \geq t_0$ (uniform stability);
- for each $\delta > 0$ and $\varepsilon > 0$, there is a $t_1 \in [0, \infty)$ such that, for all $t_0 \in \mathbb{R}^+$, if $x^0 \in B_{\delta}(\mathcal{L}_{t_0})$ then $x(t) \in B_{\varepsilon}(\mathcal{L}_t)$ for all $t \ge t_0 + t_1$ (global uniform attractivity).

Here $B_{\varepsilon}(\mathcal{L}_t)$ denotes the ε -neighborhood of $\mathcal{L}_t \subset \mathbb{R}^n$. In the paper [1], we have proposed the following asymptotic stability conditions for gradient-like systems.

Theorem 1. Let $\gamma \in C^1(\mathbb{R}^+; \mathbb{R}^m)$ and $x^* \in C^1(\overline{\Gamma}; \mathbb{R}^n)$, where $\overline{\Gamma} \subset \mathbb{R}^m$ is a closed bounded domain. Assume that there exist functions $V \in C^2(\mathbb{R}^n \times \mathbb{R}^m; \mathbb{R})$, $w_{11}, w_{12}, w_2 \in \mathcal{K} : [0, \Delta] \to \mathbb{R}^+$ with some $\Delta > 0$, such that the following conditions are satisfied:

- 1) $\gamma(t) \in \Gamma$ for all $t \ge 0$, and $\sup_{t \in \mathbb{R}^+} ||\dot{\gamma}(t)|| \le \nu$ with some $\nu \ge 0$;
- 2) for all $x \in B_{\Delta}(x^*(g)), g \in \Gamma$,

$$w_{11}(\|x - x^*(g)\|) \le V(x - x^*(g), g) \le w_{12}(\|x - x^*(g)\|),$$
$$\left\|\frac{\partial V(x - x^*(g), g)}{\partial x}\right\|^2 \ge w_2(\|x - x^*(g)\|);$$

3) there are $L, H>0, M\geq 0$ such that

$$\left\| \frac{\partial V(x,g)}{\partial x} \right\| \le L, \quad \left\| \frac{V(x,g)}{\partial g} \right\| \le M, \quad \left\| \frac{\partial^2 V(x,g)}{\partial x^2} \right\| \le H,$$

for all $x \in B_{\Delta}(x^*(g))$ and for all $g \in \Gamma$.

Then, for every $\lambda \in (0, w_{11}(\Delta))$, there exists a c > 0 such that the family of sets $\mathcal{L}_{\lambda,t} = \{x \in \mathbb{R}^n : V(x,\gamma(t)) \leq \lambda\}, t \geq 0$, is locally uniformly asymptotically stable for system $\dot{x} = -c \frac{\partial V(x,\gamma(t))}{\partial x}$.

It should be emphasized that, in contrast to many other results on the stability of non-autonomous systems (see, e.g., [2,3,5,6]), we do not require that $\lim_{t\to\infty} ||\dot{\gamma}(t)|| \to 0$ to prove the attractivity property. In this talk, we extend the approach of [1] to a general class of non-autonomous systems and discuss applications of the obtained results to such control problems as dynamical optimization and trajectory tracking.

References

- 1. Grushkovskaya V., Dürr H.-B., Ebenbauer C., Zuyev A. Extremum seeking for time-varying functions using Lie bracket approximations // IFAC-PapersOnLine. 2017. Vol. 50. P. 5522–5528.
- 2. Khalil H.K Nonlinear Systems. Prentice-Hall, 1996.
- 3. Kelemen M. A stability property // IEEE Trans. Autom. Control. 1986. Vol. 31. No. 8. P. 766–768.
- 4. Langa J.A. Robinson J.C., Suárez A. Stability, instability, and bifurcation phenomena in non-autonomous differential equations. // Nonlinearity. 2002. Vol. 15. P. 887–903.
- 5. Lawrence D.A., Rugh W.J. On a stability theorem for nonlinear systems with slowly varying inputs // IEEE Trans. Autom. Control. 1990. Vol. 35. No. 7. P. 860–864.
- 6. Malkin I.G. Theory of Stability of Motion. U.S. Atomic Energy Commission, 1952.

INCREASING THE ROBUSTNESS OF DEADBEAT CONTROLLER

D.A. Hryniuk, N.M. Oliferovich, I.H. Suhorukova, I.O. Orobei

Belarusian State Technological University 13a Sverdlova str., 220006 Minsk, Belarus hryniukda@gmail.com

Introduction. In modern control systems, almost all algorithms are implemented in digital form. At the same time the PID algorithm has a number of limitations. The problem of integral saturation is emerged if there is limitation of the control action; response speed problem; adapting the settings when changing the dynamic characteristics of the object.

1. Receiving formulas for calculating regulators. Calculation of many digital controllers is much more algorithmized. One such option is a deadbeat controller [1]. This controller is characterized by high response speed. However, this is achieved by forming a high value of the control action, which is difficult to implement under applied conditions.