

Динамика межгодовых показателей зараженности гастропод оз. Нарочь фасциолидами (1), шистосоматидами (2) и общая зараженность их трематодами (3)

1994-1996 гг. B наблюдалось повышение уровня зараженности гастропод шистосоматидами и соответственно увеличение пораженности населения шистосомным церкариозом [2]. В последующие годы отмечено постепенное снижение среднего значения инвазированности моллюсков, обусловленное принятием определенных

ограждающих зоны рекреации от водоплавающих птиц, создающих на литорали очаг напряженности шистосомной церкариозной инвазии для людей.

Отмечено также и снижение уровня заражения моллюсков фасциолидами, что связано прежде всего с резким сокращением в последние годы поголовья скота в прибрежных деревнях.

Однако, учитывая то, что моллюски, имеющие многолетний цикл развития, выделяют церкариев в течение ряда лет, опасность нового расширения очага шистосомного церкариоза в оз. Нарочь вполне вероятна. Это требует непременного продолжения мониторинговых исследований и выполнения необходимых организационных профилактических мероприятий.

Авторы благодарят сотрудников НИЛ гидроэкологии и учебно-научного центра «Нарочанская биологическая станция» Р.А. Деренговскую, Л.Т. Колик, Е.В. Лукьянову, Л.В. Никитину, В.С. Карабанович, Т.В. Жукову, Э.А. Журавлеву за помощь в обработке материала, а также А.Ю. Азаренкова за содействие в отборе проб в 2002 г.

- 1. Шалапенок Е.С. // Озерные экосистемы: биологические процессы, антропогенная трансформация, качество воды: Материалы науч. конф., Минск Нарочь, 1999 г. Мн., 2000. С. 462
- 2. Беэр С.А., Солонец Т.М., Дороженкова Т.Е., Жукова Т.В. // Медицинская паразитология и паразитарные болезни. М., 1995. С. 8.
 - 3. Шумакович Е.С. Гельминтозы жвачных животных. М., 1968.

Поступила в редакцию 14.05.2003.

Елена Семеновна Шалапенок – кандидат биологических наук, доцент кафедры зоологии. **Олег Анатольевич Макаревич** – младший научный сотрудник НИЛ гидроэкологии.

УДК 595.75 + 632.937.2 (476)

С В БУГА, А.О. ЛУКАШУК, Д.Л. ПЕТРОВ

ПОЛУЖЕСТКОКРЫЛЫЕ HACEKOMЫE (HEMIPTERA: ANTHOCORIDAE, NABIDAE, MIRIDAE) В СТРУКТУРЕ ГИЛЬДИИ ЧЛЕНИСТОНОГИХ ЖИВОТНЫХ – ХИЩНИКОВ ДЕНДРОФИЛЬНЫХ ТЛЕЙ БЕЛАРУСИ

During 18 years period of investigation 20 species of hemipterous insects have been registered in agregations of dendrocolous aphid. Among them *Anthocoris gallarumulmi* Deg. and *Anthocoris minki* Dohrn, are dominant members of the aphid predator guilds. Other species are zoophytophagous form or unspecialised predators of small arthropods. *Orius vicinus* Ribaut. (*Anthocoridae*) is new for Belarus' fauna.

Высокая популяционная численность многих видов дендрофильных тлей, выраженная избирательность в локализации особей на растении-хозяине и склонность к образованию агрегаций создают предпосылки для формирования сообществ более или менее специализированных потребителей этих

насекомых – гильдий маломобильных афидофагов. В сводках и справочных пособиях по биологическому методу защиты растений [1, 2] многие представители отряда *Hemiptera* традиционно упоминаются в числе активных энтомофагов. В то же время публикации, рассматривающие различные аспекты экологии полужесткокрылых как хищников тлей, единичны. Среди них следует выделить работу Р.П. Ракаускаса, непосредственно посвященную *Hemiptera*, питающимся тлями на плодовых и ягодных культурах [3]. В связи с этим определенный интерес представляет выявление трофических связей клопов с рассматриваемой группой насекомых-фитофагов, а также определение их места в структуре гильдий членистоногих — хищников тлей древесных растений Беларуси.

В основу настоящей работы положены материалы, полученные авторами в период с 1985 по 2002 г. в результате обследования 11 тыс. агрегаций и колоний тлей разных эколого-систематических групп с целью регистрации присутствующих энтомофагов в соответствии с методикой, предложенной Р.П. Ракаускасом [4]. Кроме того, учтены данные регистрации энтомофагов в трубчатых галлах (около 200 колоний) вязово-смородинной тли (Eriosoma ulmi L.), выполненной И.П. Москвиной [5]. Для оценки представительства рассматриваемых энтомофагов в структуре сообществ хищников дендрофильных тлей, а также выраженности трофических связей производился расчет показателей их относительного обилия ("А) и встречаемости ("Р) в агрегациях. В работе использован вариант классификации полужесткокрылых, принятый в «Каталоге полужесткокрылых Беларуси и Прибалтики» [6]. Данные по географическому распространению и трофической специализации отдельных видов клопов заимствованы из сводки Дж. Перикара [7]. Ниже представлена информация о трофо-экологических связях и особенностях биоэкологии зарегистрированных в агрегациях тлей представителей отряда.

Семейство Nabidae

- 1. Nabis ferus F. Неспециализированный хищник мелких беспозвоночных. За период исследований имаго отмечены в колониях Schizolachnus pineti F. на хвое сосны Pinus sylvestris L. Зимуют взрослые особи.
- 2. Himacerus apterus F. Неспециализированный хищник мелких беспозвоночных. Имаго зарегистрированы в колониях Cinara costata Zett. на побегах ели Picea abies (L.) Karst. Зимуют яйца.

Семейство Anthocoridae

- 3. Anthocoris nemorum L. За период исследований имаго и личинки зарегистрированы в агрегациях 18 видов тлей, представляющих 5 семейств надсемейства настоящих тлей (Aphidoidea) и их различные экологические группы (табл. 1), что вполне соответствует имеющимся в литературе [7] характеристикам А. nemorum как неспециализированного хищника мелких беспозвоночных. Зимуют имаго.
- 4. Anthocoris gallarumulmi Deg. Относительно специализированный хищник насекомых. Личинки развиваются в открытых галлах *E. ulmi* и *Eriosoma lanuginosum* Hart. Имеющиеся в литературе данные о нахождении личинок в открытых галлах ясеневых листоблошек рода *Psyllopsis* Löw. свидетельствуют в пользу специализации *A. gallarumulmi* к развитию именно в открытых галлах, представляющих собой свернутые в трубку или гофрированные листовые пластинки древесных растений, в которых обитают защищенные хлопьеобразными восковыми выделениями личинки равнокрылых насекомых. При высоких плотностях *A. gallarumulmi* (более 7–10 особей на колонию) все тли оказываются потребленными до завершения развития личинок, так что последние вынуждены покидать трубчатые галлы, рассеиваясь по растениям в поисках жертв. С этим связаны единичные случаи регистрации личинок *A. gallarumulmi* в открывшихся по созревании галлах *Colopha*

compressa Koch на вязах, а также в колониях Dysaphis ranunculi Kalt. на листовых пластинках боярышника однопестичного (Crataegus monogyna Jacq.) при их совместном с вязом компактном произрастании. В наших условиях вид моновольтинен. До и после периода размножения и развития личинок взрослые особи могут отмечаться на различных растениях, преимущественно древесных. Зимуют имаго.

Таблица 1 Видовой состав, растения-хозяева и локализация агрегаций (колоний) дендрофильных тлей, в которых зарегистрированы имаго и личинки *Anthocoris nemorum*

Дендрофильные тли	Древесные растения	Локализация агрегаций					
Pemphigus spyrothecae Pass.	Populus italica Du Rue	Спиральные толстостенные закрытые галлы на черешках листьев					
Eriosoma ulmi L.	Ulmus glabra 'Pendula'	Трубчатые открытые галлы, обра зованные сворачиваем края лист					
Anoecia corni F.	Cornus alba L., Cornus pumila Koehne, Swida sanguinea (L.) Opiz.	Листовые пластинки, вершины побегов и соцветия					
Pterocallis alni Deg.	Alnus glutinosa (L.) Gaertn.	Листовые пластинки					
Betulaphis brevipilosa Börn.	Betula pendula Roth	Листовые пластинки					
Periphyllus aceris L.	Acer platanoides L.	Листовые пластинки					
Chaitophorus salicti Schrnk.	Salix cinerea L.	Листовые пластинки					
Pterocomma rufipes Hart.	Salix alba L. 'Pyramıdalis'	1-3-летние ветви					
Hyalopterus pruni Geoff.	Prunus domestica L. hort. cv. Prunus spinosa L. hort. cv.	Слабодеформированные листовые пластинки, вершины побегов					
Rhopalosiphum padi L.	Padus avium Mill. hort. cv.	Деформированные листовые пла- стинки, вершины побегов					
Aphis farinosa Gmel.	Salix caprea L.	Побеги					
Aphis pomi Deg.	Malus domestica Borkh, hort. cv., Crataegus monogyna Jacq.	Листовые пластинки, вершины побегов					
Aphis sambuci L.	Sambucus nigra L.	Листовые пластинки, вершины побегов					
Ceruraphis eriophori Walk.	Viburnum opulus L.	Листовые пластинки					
Dysaphis ranunculi Kalt.	Crataegus monogyna Jacq.	Пузырчатые открытые галлы на листовых пластинках, недефор- мированные листовые пластинки					
Acyrthosiphon caraganae Chol.	Caragana arborescens Lam.	Бобы					
Myzus padellus H. R. L. & Rog.	Padus avium Mill. hort. cv.	Недеформированные листовые пластинки					
Schizolachnus pineti F.	Pinus sylvestris L.	Иглы (хвоя)					

- 5. Anthocoris minki Dohrn. (указания на Anthocoris confusus Reut. [5] в действительности относятся к А. minki). Развитие личинок протекает в закрытых галлах тополевых тлей рода Pemphigus Hart., что свидетельствует о высоком уровне специализации. До и после периода размножения и развития личинок взрослые особи могут отмечаться на различных растениях. Характерным является их нахождение на листьях, заселенных негаллоформирующими тополевыми тлями Chaitophorus populeti Panz. A. minki рассматривается как северносредиземноморский вид [7], и его экспансия на север обеспечивается значительным расширением ареалов ряда видов тлей-пемфигид, что стало возможным благодаря интродукции и широкому распространению в культуре черных тополей, в первую очередь тополя пирамидального.
- 6. Orius minutus L. Зоофитофаг, спектр жертв включает различных равнокрылых насекомых (тли, листоблошки, цикадовые), трипсов и клещей. Характерным является высасывание яиц чешуекрылых и клопов-пентатомид. За период исследований имаго зарегистрированы в колониях Sch. pineti на хвое сосны и агрегациях тлей Chaitophorus salicti Schrnk. на листовых пластинках ивы Salix cinerea L. Зимуют взрослые особи.

- 7. Orius niger Wf. Неспециализированный хищник сосущих членистоногих (растениеобитающие клещи, тли, трипсы). Питается в основном яйцами чешуекрылых и клопов-пентатомид. За период исследований имаго зарегистрированы в колониях Sch. pineti на хвое сосны, агрегациях тлей Ch. salicti на листовых пластинках S. cinerea и Chaitophorus leucomelas Koch тополя пирамидального. Зимуют взрослые особи.
- 8. Orius vicinus Ribaut. Известен как хищник тетраниховых клещей Schizotetranychus tiliarium Herman и Panonychus ulmi C.L. Косh, а также тлей Eucallipterus tiliae L. на липах; регистрировалось питание и пыльцевыми зернами [7]. В ходе наших исследований единственный экземпляр был отмечен в колонии Dysaphis plantaginea Pass. на яблоне (12.07.1997; г. Минск, Курасовщина, участок заброшенного сада у железнодорожного остановочного пункта). Для фауны Беларуси вид указывается впервые. По данным литературы [7], зимуют взрослые самки.

Семейство Miridae

- 9. Atractotomus magnicornis Fall. Зоофаг, обитатель хвойных древесных растений. Имаго отмечены в колониях Sch. pineti на хвое сосны. Зимуют яйца.
- 10. Campylomma verbasci M.-D. Зоофитофаг, спектр жертв включает клещей, тлей и трипсов. За период исследований личинки зарегистрированы в колониях вязово-смородинной тли в трубчатых галлах на вязах и в скоплениях диапаузирующих личинок Periphyllus aceris L. на листовых пластинках клена остролистного (Acer platanoides L.). Зимуют яйца.
- 11. Closterotomus biclavatus H.-S. Зоофитофаг. В ходе проведенных обследований имаго отмечены в агрегациях Acyrtosiphon caraganae Chol. на созревающих бобах караганы древовидной (Caragana arborescens Lam.) и в скоплениях диапаузирующих личинок P. aceris на листовых пластинках A. platanoides. Зимуют яйца.
- 12. Deraeocoris lutescens Shill. Хищник тлей и других мелких насекомых. Личинки отмечены в колониях *E. ulmi* в трубчатых галлах на вязах. Зимуют имаго.
- 13. Dryophilocoris flavoquadrimaculatus Deg. Зоофитофаг, характерный обитатель дубов. Единичный экземпляр имаго отмечен в колонии Anoecia corni F. на соцветии Cornus alba L. Зимуют яйца.
- 14. Lygus pratensis L. Зоофитофаг. Фоновый в условиях Беларуси вид клопов-слепняков. В осенний период имаго регистрировались в агрегациях A. corni на листовых пластинках C. alba, Cornus pumila Koehne и Cornus mas L., а также в колониях D. ranunculi на листовых пластинках C. monogyna. Зимуют взрослые особи.
- 15. Lygus rugulipennis Popp. Зоофитофаг. Фоновый в условиях Беларуси вид клопов-слепняков. В осенний период имаго регистрировались в агрегациях A. corni на листовых пластинках C. alba, C. mas, в колониях D. ranunculi на листовых пластинках C. monogyna, а также в агрегациях тлей рода Capitophorus van der Goot на листовых пластинках облепихи крушиновой (Hippophae rhamnoides L.). Зимуют взрослые особи.
- 16. Orthotylus viridinervis Kbm. Зоофитофаг. Личинки отмечены в колониях вязово-смородинной тли в трубчатых галлах на вязах. Зимуют яйца.
- 17. Orthotylus marginalis Reut. Зоофитофаг. Имаго зарегистрированы в колониях Aphis pomi Deg. на саженцах сортовых яблонь. Зимуют яйца.
- 18. Pilophorus sp. (вероятно, Pilophorus cinnamopterus Kbm.). Представители рода являются хищниками тлей и других мелких насекомых. За период исследований личинки отмечены в колониях тлей Cinara pinea Mordv. на сеголетнем приросте сосны обыкновенной. Попытки вывести имаго оказались безуспешными.
- 19. Psallus ambiguus Fall. Зоофитофаг. Основной группой потребляемых членистоногих являются листоблошки, обитающие на лиственных деревьях.

Имаго регистрировались в колониях *Dysaphis sorbi* Kalt. на побегах рябины *Sorbus aucuparia* L., а также в агрегациях тлей *Pterocallis alni* Deg. на листовых пластинках ольхи *Alnus glutinosa* (L.) Gaertn. Зимуют яйца.

20. *Psallus variabilis* Fall. Зоофитофаг. Личинки отмечены в колониях вязово-смородинной тли в трубчатых галлах на вязах. Зимуют яйца.

Таким образом, в состав гильдии хищников дендрофильных тлей в условиях Беларуси входят по меньшей мере 20 видов полужесткокрылых насекомых. Большинство из них не проявляют высокой степени специализации к локальным местообитаниям, существование которых связано с жизнедеятельностью тлей (галлы, деформированные листовые пластинки и т. п.), а также к питанию данной категорией жертв. Более того, половина видов принадлежит к трофоэкологической группе зоофитофагов, еще 8 рассматриваются в качестве малоспециализированных хищников мелких членистоногих. И лишь 2 вида клопов-антокорид – A. gallarumulmi и A. minki – специализированы к развитию в галлах тлей семейства Pemphigidae, составляя основу гильдий хищников этих тлей [5]. Так, встречаемость имаго и личинок A. Gallarumulmi в колониях E. ulmi составляла 61,9 % при относительном обилии 93,21 %. Встречаемость A. minki в сформированных P. spyrothecae галлах низка – 3,85 %, но достаточно высокое значение показателя относительного обилия (73,77 %) указывает на доминирующее положение данного вида в составе соответствующей гильдии. Малоспециализированные представители семейств Anthocoridae, Nabidae и Miridae, напротив, характеризуются невысокими уровнями встречаемости и относительного обилия в агрегациях дендрофильных тлей разных эколого-систематических групп (табл. 2). Это вполне закономерно, так как тли представляют для этих насекомых лишь один из многих кормовых объектов.

Таблица 2
Представительство полужесткокрылых насекомых в структуре сообществ (гильдий) хищников дендрофильных тлей: Anoecia corni (Anoeciidae), Betulaphis brevipilosa и Periphyllus aceris (Drepanosiphidae), Dysaphis ranunculi (Aphididae), Schizolachnus pineti и Cinara costata (Lachnidae)

Семейства полужесткокрылых	Anoecia corni		Betu aphis brevipilosa		Periphyllus aceris		Dysaphis ranunculi		Schizolachnus pineti		Cinara costatai	
	A %	P. %	A. °a	P. %	A. %	P.ºa	A. %	P. %	A. 0	P.º.	A	P
Nabidae	-	-	-	-	-	-	-	-	1,64	0.23	6,67	0,31
Anthocoridae	0,73	0,23	4,08	0,20	4,17	0,26	5,97	1,12	6,56	0 93	-	-
Miridae	0,27	0.09	-	_	6,24	0,39	-	-	3,28	0.47	-	_
Обијая встречаемость хищни- ков, %	20,10		4,51		5,69		12,97		14,25		4.63	
Число обследованных колоний	3462		997		774		717		428		324	

Следовательно, среди полужесткокрылых, входящих в состав гильдий маломобильных хищников дендрофильных тлей, можно выделить две группы с диаметрально противоположными особенностями биоэкологии. Во-первых, это высокоспециализированные формы, развитие которых протекает в галлах, сформированных отдельными видами тлей-пемфигид, причем они доминируют в составе гильдий их энтомофагов. К данной группе в условиях Беларуси относится ограниченный круг клопов-антокорид: A. Gallarumulmi, A. minki и, возможно, A. confusus. Во-вторых, это малоспециализированные энтомофаги, а также зоофитофаги, пребывание которых в агрегациях дендрофильных тлей можно считать эпизодичным, на что указывает низкий (менее 1,5 %) уровень их встречаемости. Представленные в настоящей статье данные позволяют отнести к этой группе по меньшей мере 18 видов полужесткокрылых, но дальнейшие исследования могут значительно дополнить их список.

^{1.} Полезная фауна плодового сада: Справ. М., 1989. С. 319.

^{2.} Голуб В.Б. // Определитель вредных и полезных насекомых и клещей плодовых и ягодных культур в СССР. М., 1984. С. 87.

3. Ракаускас Р.П. // Тр. АН ЛитССР. Сер. В (С). 1984. № 2. С. 45.

4. Tam жe. 1980. № 2. C. 33.

- 5. Москвина И.П., Петров Д.Л., Буга С.В. // Разнообразие животного мира Беларуси. Итоги изучения и перспективы сохранения: Материалы междунар. науч. конф. Мн., 2001. С. 117.
- 6. Lukashuk A. Annotated list of *Heteroptera* of Belarus' and Baltia. St. Peterburg, 1997. P. 44.
 - 7. Péricart J. // Fauna de l'Europe et du Bassin Méditerranéen. Paris, 1972. Vol. 7. P. 404.

Поступила в редакцию 27.05.2003.

Сергей Владимирович Буга – доктор биологических наук, профессор кафедры зоологии. Александр Олегович Лукашук – старший научный сотрудник Государственного природоохранного учреждения «Березинский биосферный заповедник».

Дмитрий Леонидович Петров – аспирант кафедры зоологии. Научный руководитель –

С.В. Буга.

УДК 591.5:595.753 (476)

О.И. БОРОДИН, С.В. БУГА

Seasonal dynamics of a species diversity of Auchenorrhyncha imago of the Western Belarus landscape-geographical province is tracked on the basis of the five years' data. The maximum of a species variety falls at 3 decade of July, on the diagram its dynamics is described by a dome-shaped curve. 4 phenological groups of Auchenorrhyncha are displayed, typical trends of seasonal dynamics of number of their representatives are shown.

Долгое время фауна цикадовых (Homoptera: Auchenorrhyncha) Беларуси оставалась слабоизученной [1, 2]. С 1997 г. нами выполнялись целенаправленные исследования, позволившие получить данные о таксономическом составе цикадовых Березинского биосферного заповедника, заказника «Налибокская пуща», прилегающих к ним территорий, а также об отдельных особенностях биологии и экологии этих насекомых в условиях Беларуси [3-7]. Особое внимание было уделено изучению цикадовых Западно-Белорусской ландшафтно-географической провинции, объединяющей территории Гродненской, Волковысской, Новогрудской, Минской и Копыльской возвышенностей, Вилейской низины и Белорусского Понеманья. Эта провинция характеризуется большим разнообразием природных комплексов при высокой мозаичности ландшафтов [8], что увеличивает прогностическую ценность получаемой информации. К настоящему времени накоплены достаточно полные сведения о таксономическом составе региональной фауны цикадовых [3-6], что создает предпосылки для перехода к рассмотрению ее структурных особенностей.

Материал и методика

Исследование сезонной динамики видового разнообразия имаго цикадовых базируется на сборах, выполненных в период 1997—2002 гг. в условиях всех основных типов фитоценозов, характерных для Западно-Белорусской провинции. Данные разных полевых сезонов пулировались [9].

Основные тренды сезонной динамики численности имаго отдельных видов цикадовых устанавливались по результатам регулярных учетов кошением стандартным энтомологическим сачком (диаметр обруча — 22 см, длина рукояти — 1 м; 5 повторностей по 25 полных, т. е. двойных взмахов) в стационарах, располагающихся в пределах Верхненеманской низины на

Авторы статьи – сотрудники кафедры зоологии.