Т. В. СЕРЕБРЯНСКАЯ, П. Н. ГАПОНИК, А. С. ЛЯХОВ, О. А. ИВАШКЕВИЧ

СИНТЕЗ И СТРОЕНИЕ НОВЫХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ(II) С N-ЗАМЕЩЕННЫМИ ТЕТРАЗОЛАМИ

Неослабевающий интерес к новым комплексным соединениям платиновых металлов обусловлен перспективой создания на их основе эффективных противоопухолевых средств, превосходящих по своей активности существующие препараты и в тоже время лишенных их недостатков [1]. Долгое время все внимание исследователей было сосредоточено на структурных аналогах цисплатина, строение которых удовлетворяло классическим правилам взаимосвязи структуры И активности [2, 3]. Однако к концу прошлого века накопившийся экспериментальный материал потребовал пересмотра и расширения этих правил, что, прежде всего, было связано с обнаружением активности транс-платиновых комплексов, среди которых наиболее многообещающие результаты получены для соединений, содержащих гетероциклические амины, иминоэфиры разветвленные или алифатические амины [4-6]. В данном ряду комплексы азотсодержащих гетероциклов выгодно отличаются сравнительно высокой активностью, проявляемой как транс-, так и цис-изомерами.

К настоящему времени изучены цитотоксические свойства платиновых комплексов шестицелого ряда И пятичленных гетероциклических аминов, включая пиридин, хинолин, изохинолин, имидазол, пиразол и др. [4]. Известны тиазол, проявляющие противоопухолевую активность биядерные платиновые комплексы на основе триазола [7]. В последние годы значительно возрос интерес и к палладиевым аналогам активных *транс*-платиновых комплексов [8]. В то литературных показывает, что же время анализ данных противоопухолевые свойства тетразолсодержащих комплексов как платины, так и палладия до сих пор практически не исследованы, что во многом обусловлено крайней ограниченностью сведений об их синтезе и структуре [9, 10].

В данной работе впервые изучено взаимодействие хлорида палладия(II) с рядом N-моно- и C,N-дизамещенных тетразолов, а также 2,5-дизамещенных биядерных тетразолов.

МЕТОДИКА ЭКСПЕРИМЕНТА

5-Амино-1(2)-метилтетразолы (L^1 и L^3) [11], 5-амино-1-фенилтетразол (L^2) 5-амино-2-трет-бутилтетразол (L^4) [12]. [13]. 1-(2-гидроксиэтил) тетразол (L^5) [14], 1,5-диаминотетразол (L^6) [15], и бис(2-метилтетразол-5-ил)амин (HL⁷) [16] синтезировали по описанным методикам. N-замещенные бистетразолилтриазены HL⁸ и HL⁹ были получены разработанным нами методом из соответствующих 2замещенных 5-аминотетразолов [17]. Для синтеза комплексов использовали дигидрат хлорида палладия(II) квалификации "ч.д.а.".

палладия(II) комплексов хлорида с N-замещенными Синтез L^1-L^6 , а также биядерными тетразолами HL^7-HL^9 тетразолами проводили по следующей общей методике: 1 ммоль (214 мг) PdCl₂·2H₂O растворяли в 30 мл 1% соляной кислоты при нагревании. К полученному раствору при перемешивании добавляли раствор лиганда (2 ммоль в случае тетразолов $L^{1}-L^{6}$ и 1ммоль в случае биядерных тетразолов HL^{7} - HL^{9}) в 10–15 мл воды (для лигандов L^{1} , L^{5} , L^{6}) или в 20 мл этилового лигандов $L^2 - L^4$ и $HL^7 - HL^9$). Реакционную смесь спирта (для перемешивали 15-20 мин, при этом окраска раствора изменялась от коричневой до светло-желтой. Образующийся желтый кристаллический осадок отфильтровывали, промывали водой и сушили. В случае комплекса $Pd(L^{1})_{2}Cl_{2}$ из фильтрата была получена дополнительная продукта монокристаллов, порция В виде пригодных для Сведения о выходе комплексов и рентгеноструктурного анализа. содержании палладия приведены в табл. 1.

ИК-спектры в области частот 4000–400 см⁻¹ сняты на спектрометре IR "Thermo Avatar 330" фирмы "Nicolet" в кюветах из SiC.

ИК-спектры в области частот 400–50 см⁻¹ сняты на спектрометре «Vertex 70» фирмы «Bruker Optik GmbH» между полиэтиленовыми окнами.

Содержание палладия(II) в комплексах после их разложения определяли гравиметрически осаждением спиртовым раствором диметилглиоксима.

Рентгеноструктурный анализ (PCA) выполнен на автоматическом четырехкружном дифрактометре Nicolet R3m (МоК α -излучение, графитовый монохроматор; $\theta/2\theta$ -сканирование, 2θ max = 55–60⁰).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате проведенных исследований показано, что хлорид палладия(II) вступает в реакцию с N-моно- и C,N-дизамещенными тетразолами L^1-L^6 с образованием кристаллических комплексов состава

PdL₂Cl₂ с высоким выходом (табл. 1). Реакция протекает в подкисленных водных средах при комнатной температуре и завершается в течение нескольких минут.

 $\begin{array}{c} \mathbf{L}^{4} \cdot \mathbf{L}^{5} \\ \mathbf{L}^{1} : \ \mathbf{R}^{1} = \ \mathbf{N}\mathbf{H}_{2}, \ \mathbf{R}^{2} = 1 \cdot \mathbf{C}\mathbf{H}_{3}; \ \mathbf{L}^{2} : \ \mathbf{R}^{1} = \ \mathbf{N}\mathbf{H}_{2}, \ \mathbf{R}^{2} = 1 \cdot \mathbf{P}\mathbf{h}; \ \mathbf{L}^{3} : \ \mathbf{R}^{1} = \ \mathbf{N}\mathbf{H}_{2}, \ \mathbf{R}^{2} = 2 \cdot \mathbf{C}\mathbf{H}_{3}; \\ \mathbf{L}^{4} : \ \mathbf{R}^{1} = \ \mathbf{N}\mathbf{H}_{2}, \ \mathbf{R}^{2} = 2 \cdot \mathbf{B}\mathbf{u}; \ \mathbf{L}^{5} : \ \mathbf{R}^{1} = \mathbf{H}, \ \mathbf{R}^{2} = 1 \cdot (\mathbf{C}\mathbf{H}_{2})_{2}\mathbf{O}\mathbf{H}; \ \mathbf{L}^{6} : \ \mathbf{R}^{1} = \ \mathbf{N}\mathbf{H}_{2}, \ \mathbf{R}^{2} = 1 \cdot \mathbf{N}\mathbf{H}_{2}. \end{array}$

Таблица 1

Состав, выход и температуры разложения комплексов хлорида палладия(II) с N-замещенными тетразолами L¹–L⁶

Комплекс	Выход, %	Содержа	T	
		Найдено	Вычислено	Гразл., °С
$Pd(L^1)_2Cl_2$	99,4	28,2	28,46	> 250
$Pd(L^2)_2Cl_2$	87,2	21,4	21,40	~ 250
$Pd(L^3)_2Cl_2$	99,2	28,6	28,46	~ 250
$Pd(L^4)_2Cl_2$	99,6	21,8	23,26	~ 240
$Pd(L^5)_2Cl_2$	93,6	25,8	26,35	~ 190
$Pd(L^6)_2Cl_2$	81,1	28,0	28,31	~ 230
$Pd(\mathbf{HL}^7)Cl_2$	96,7	29,0	29,81	> 250
$Pd(L^8)Cl$	74,8	28,9	30,53	> 250
$Pd(L^9)Cl$	87,9	23,8	24,62	> 250

Строение всех полученных комплексных соединений изучалось с помощью ИК-спектроскопии (табл. 2 и 3). Наблюдаемые изменения в области валентных (1600–1200 см⁻¹) и валентно-деформационных (1100–900 см⁻¹) колебаний тетразольного кольца свидетельствуют о его участии в образовании координационной связи. В частности, перераспределение электронной плотности при комплексообразовании приводит к повышению частот валентных колебаний связей v(C=N) и v(N=N) тетразольного кольца в среднем на 5–30 см⁻¹.

Известно [10], что длинноволновая ИК-спектроскопия является удобным инструментом идентификации геометрических изомеров в плоскоквадратных комплексах платины и палладия. В ИК-спектрах полученных соединений валентные колебания связей v(Pd-N) и v(Pd-C1) наблюдаются в виде нерасщепленных полос соответственно при 370–340 и 330–300 см⁻¹ (табл. 2 и 3), что указывает на *транс*-строение данных

комплексов, которое в случае комплекса $Pd(L^1)_2Cl_2$ подтверждается данными PCA (рис. 1).

Таблица 2

L^1	$Pd(L^1)_2Cl_2$	L^2	$Pd(L^2)_2Cl_2$	L ³	$Pd(L^3)_2Cl_2$	Отнесение
1584 cp 1565 cp	1594 c 1565 cp	1566 c	1570 cp	1586 c 1547 c 1515 cp	1557 c	v(C=N)
1491 c 1461 c	1505 c 1452 c	1456 c	1458 cp	1448 c 1416 c	1434 oc	ν(N=N)кольца +δ(CH ₃)as
1382 сл	1368 cp			1377 ср	1373 cp	δ(CH ₃)s
1322 ср 1281 сл 1236 сл	1342 c 1290 cp 1233 cp	1326 с 1290 ср 1207 сл	1363 сл 1342 сл 1291 сл	1340 сл 1316 ср 1205 с	1328 cp 1202 c	ν(C-N)кольца ν(N-N)кольца
-	370 cp	-	355 cp	-	346 c	v(Pd–N)
-	325 c	-	324 c	-	322 cp	v(Pd–Cl)

Основные полосы поглощения в ИК-спектрах N-замещенных тетразолов L¹– L³ и их комплексов с хлоридом палладия(II)

Примечание. Здесь и далее: ос – очень сильная; с – сильная; ср – средняя; сл – слабая.

Таблица З

Основные полосы поглощения в ИК-спектрах N-замещенных тетразолов L⁴– L⁶ и их комплексов с хлоридом палладия(II)

L ⁴	$Pd(L^4)_2Cl_2$	L ⁵	$Pd(L^5)_2Cl_2$	L ⁶	$Pd(L^6)_2Cl_2$	Отнесение
1565 c 1540 c	1551 c	1492 c	1504 c	1489 cp	1493 cp	v(C=N)
1462 c 1404 cp	1453 с 1403 сл	1443 c	1445 c	1387 cp 1333 c	1357 cp 1324 cp	ν(N=N)кольца +δ(CH ₃)as
1373 c	1371 oc	1362 cp	1385 c 1354 c	-	-	δ(CH ₃)s
1310 cp 1208 c 1193 c	1328 cp 1300 cp 1237 cp 1192 oc	1331 сл 1291 сл 1243 сл 1268 сл 1182 с	1304 c 1278 cp 1251 c 1177 c	1302 ср 1254 ср 1190 сл	1289 cp 1239 cp 1135 c	ν(C-N)кольца ν(N-N)кольца
-	353 cp	-	356 c	-		v(Pd–N)
-	332 cp	-	304 cp	-		v(Pd–Cl)

На рис. 1 видно, что комплекс $Pd(L^1)_2Cl_2$ имеет *транс*-строение, при этом лиганд координируется посредством N(4)-атома тетразольного кольца. Трехмерная структура данного комплекса реализуется за счет межмолекулярных водородных связей N–H...Cl между аминогруппой лиганда и хлорид-ионом.

Рис. 1. Строение координационного узла комплекса *транс*- $Pd(L^1)_2Cl_2$

Биядерные тетразолы HL^7-HL^9 реагируют с дигидратом хлорида палладия(II) в условиях, аналогичных синтезу комплексных соединений моноядерных тетразолов. При этом в случае бис(2-метилтетразол-5ил)амина (HL^7) образуется дихлоридный комплекс состава $Pd(HL^7)Cl_2$, в то время как взаимодействие хлорида палладия с N-замещенными бистетразолилтриазенами HL^8 и HL^9 сопровождается депротонированием лигандов и образованием триазенидных комплексов состава PdLCl:

Предложенное строение комплексов основано на данных элементного анализа и ИК-спектроскопии (табл. 1 и 4). На депротонирование триазенов при комплексообразовании указывает исчезновение полос валентных и деформационных колебаний N–H-связи, присутствующих в спектрах лигандов соответственно при 3200–3110 и 1600–1590 см⁻¹. Кроме того, в длинноволновых ИК-спектрах данных комплексов наблюдается только по одному колебанию связей v(Pd–N) и v(Pd–Cl), в

то время как в спектре комплекса $Pd(HL^7)Cl_2$ полоса колебания v(Pd-N) расщепляется на две составляющие, что подтверждает *цис*-конфигурацию последнего.

Таблица 4

HL ⁷	$Pd(HL^7)Cl_2$	HL ⁸	PdLCl	HL ⁹	PdLCl	Отнесение
3277 с 3192 с	3277 ср 3195 с	3188 cp 3132 cp	-	3181cp 3131cp	-	ν(N–H)
1660 oc	1625 oc	1594 oc	-	1590 oc	-	δ(N–H)
1564 oc 1540 c	1572 c	1519 cp	1525 cp	1514cp	1527 c	v(C=N)
1464 cp 1434 c	1480 c 1440 oc	1461 oc 1413 cp	1427 cp	1481 c 1466 c 1459 c	1462 cp	ν(N=N)кольца +δ(CH ₃)as
1369 cp 1333 cp	1377 ср 1331 ср 1315 сл	1390 cp 1347 c	1371 oc	1386 c 1371 c 1340 cp 1313 cp	1374 oc 1359 c	δ(CH ₃)s + ν кольца
1272 сл 1201 ос	1185 c	1285 cp 1194 oc	1274 cp	1278cp 1211c 1188oc	1293 cp 1206 cp 1179 c	ν(C-N)кольца ν(N-N)кольца
-	358 ос 347 с	-	358 oc	-	313 cp	v(Pd–N)
-	325 cp	-	321 cp	-	350 oc	v(Pd-Cl)

Основные полосы поглощения в ИК-спектрах биядерных тетразолов HL⁷– HL⁹ и их комплексов с хлоридом палладия(II)

Полученные нами комплексы представляют значительный интерес с точки зрения исследования их цитотоксических свойств. Долгое время исследователи, занятые поиском новых противоопухолевых препаратов, пренебрегали соединениями палладия, что объясняется его склонностью к образованию комплексов транс-строения и большей лабильностью продуктов по сравнению с платиновыми аналогами. Однако сегодня известно, что *транс*-строение комплекса не является препятствием для проявления им антипролиферативной активности, а скорость реакций замещения в комплексах палладия успешно снижается введением в их состав объемных лигандов, например, гетероциклических аминов, которые создают стерические препятствия для нуклеофильной атаки, а способствует хелатирующих лигандов, что образованию также термодинамически устойчивых продуктов. Среди синтезированных нами соединений особый интерес представляет комплекс $Pd(L^5)_2Cl_2$ 1-(2-гидроксиэтил)тетразола обладающий хорошей растворимостью в водных средах, и комплекс бистетразолиламина Pd(**HL**⁷)Cl₂, *цис*-конфигурация и термодинамическая устойчивость которого обусловлены строением бистетразольного хелатирующего лиганда.

выводы

- 1. Синтезирован ряд новых комплексов хлорида палладия(II) с N-моно- и С,N-дизамещенными тетразолами, в том числе, 2,5-замещенными бистетразолами.
- 2. На основании данных элементного анализа и ИК-спектроскопии определены состав и строение полученных комплексных соединений. Структура комплекса *mpaнc*-Pd(L¹)₂Cl₂ установлена методом PCA.
- 3. Среди синтезированных соединений произведен отбор комплексов, наиболее перспективных с точки зрения изучения их цитотоксических свойств.

ЛИТЕРАТУРА

1. Guo Z., Sadler P. J. // Adv. Inorg. Chem. 1999. Vol. 49. P. 183–306.

2. Wong E., Giandomenico C. M. // Chem. Rev. 1999. Vol. 99. P. 2451-2466.

3. Hambley T. W. // Coord. Chem. Rev. 1997. Vol. 166. P. 181-223.

4. Kalinowska-Lis U., Ochocki J., Matlawska-Wasowska K. // Coord. Chem. Rev. 2007. In Press. doi:10.1016/j.ccr.2007.07.015

5. Perez J. M., Fuertes M. A., Alonso C., Navarro-Ranninger C. // Critical Reviews in Oncology/Hematology. 2000. Vol. 35. P. 109–120.

6. Natile G., Coluccia M. // Coord. Chem. Rev. 2001. Vol. 216–217. P. 383–410.

7. Komeda S., Lutz M., Spek A. L., et al. // Inorg. Chem. 2000. Vol. 39. P. 4230–4236.

8. Kuduk-Jaworska J., Puszko A., Kubiak M., Pełczynska M. // J. Inorg. Biochem. 2004. Vol. 98. P. 1447–1456.

9. Гапоник П.Н., Войтехович С. В., Ивашкевич О. А. // Успехи химии. 2006. Т. 75. С. 569–603.

10. Серебрянская Т.В., Гапоник П.Н., Ивашкевич О. А. // Вестн. БГУ. Сер. 2. 2007. №3. С. 3–29.

11. Ronald A.H., William G.F. // J. Am. Chem. Soc. 1954. Vol. 76. P. 923–926.

12. Воробьев А.Н., Гапоник П.Н., Петров П.Т. // Весці НАН Беларусі. Сер. хім. навук. 2003. № 2. С. 50–53.

13. Корень А.О., Гапоник П.Н. // ХГС. 1990. № 12. С. 1643–1647.

14. Гапоник П.Н., Каравай В.П. // ХГС. 1985. № 10. С. 1422–1424.

15. Гапоник П.Н., Каравай В.П. // ХГС. 1984. № 12. С. 1683–1686.

16. Hattori K., Lieber E., Horwitz J. P. // J. Am. Chem. Soc. 1956. Vol. 78. P. 4197–4201.

17. Серебрянская Т.В., Гапоник П.Н., Григорьев Ю.В., Ляхов А.С. // XXIII Международная Чугаевская конф. по координационной химии: Тез. докл. Одесса, 2007. С. 654.

The interaction between palladium(II) chloride and several N-substituted mono- and dinuclear tetrazoles was investigated for the first time. 1-Methyl-, 1-phenyl-, 2-methyl- and 2-*tert*-butyl-substituted 5-aminotetrazoles as well as 1-(2-hydroxyethyl)tetrazole and 1,5-diaminotetrazole were shown to react with palladium dichloride in water or water-ethanol mixture (pH = 1–2) to give crystalline complexes PdL₂Cl₂ in high yield. In analogous conditions bis(2-methyltetrazol-5-yl)amine forms complex Pd(HL⁷)Cl₂ while 1,3-bis(2-methyltetrazol-5-yl)triazene and 1,3-bis(2-*tert*-butyltetrazol-5-yl)triazene deprotonate to give complexes PdLCl. Products were characterized by elemental analysis and IR-spectroscopy. The structure of complex *trans*-Pd(L¹)₂Cl₂ was established by X-ray analysis.