ВЛИЯНИЕ ВЫСОКОЭНЕРГЕТИЧЕСКОЙ ИОННОЙ ИМПЛАНТАЦИИ НА СТРУКТУРНО-ФАЗОВУЮ СТАБИЛЬНОСТЬ СПЛАВА AI-4 BEC. % Cu

С.И. Жукова, Н.И. Поляк Белорусский государственный университет, пр. Ф. Скорины, 4, 220050, Минск тел.: +375 17-209-54-80, e-mail: poliak@bsu.by

Исследовано влияние имплантации ионов Kr⁺ с энергией 245 МэВ на структурно-фазовое состояние сплава Al-4% Cu. Показано, что в результате имплантации 10¹³ и 10¹⁴ Kr⁺/см² происходит уменьшение плотности включений ⊖-фазы и изменение их размеров. Наблюдаемое упрочнение сплава при имплантации является следствием обогащения твердого раствора атомами меди и радиационно-стимулированных процессов старения.

Введение

В предыдущих работах [1-5] исследовано влияние высокоэнергетической ионной имплантации (ВЭИИ) на структуру и свойства многокомпонентных дисперсионнотвердеющих сплавов на основе алюминия (системы Al-Cu-Mg, Al-Cu-Mg-Si, Al-Cu-Zn). Показано, что определяющую роль в изменении прочностных свойств имплантированных на разных стадиях старения сплавов играет их исходное структурно-фазовое состояние. При имплантации происходит растворение полностью либо частично когерентных включений, что приводит к снижению прочностных характеристик сплавов. Одновременно инициируются процессы старения с образованием новых зон Гинье-Престона и мелкодисперсных метастабильных включений вторых фаз, при этом степень разупрочнения уменьшается, и для повреждающих доз ~10³ с.н.а. наблюдается упрочнение сплавов. ВЭИИ вызывает упрочняющий эффект в сплавах, фазовый состав которых включает наряду с метастабильными выделениями и стабильные.

В данной работе исследовался двухкомпонентный модельный дисперсионнотвердеющий сплав Al-4 вес. % Сu, имплантированный в равновесном состоянии ионами криптона с энергией 245 МэВ.

Методика эксперимента

Для создания равновесного состояния образцы сплава Al-4 вес. % Cu (размер 10×3×1,5 мм³) после закалки от T=813 К отжигались в течение 8 часов при T=800 К. После отжига образцы подвергались электрополировке (состав электролита: 49 мл CH₃OH+49 мл HNO₃+2 мл HCI). Имплантация ионов криптона с энергией 245 МэВ до доз 10¹³ и 10¹⁴ см² осуществлялась при температуре, не превышающей 300 К.

Нагрузка на индентор при измерении микротвердости по методу Виккерса составляла 0,1...0,4 Н, что соответствует интервалу глубин индентирования 2...6 мкм. Анализ изменения микротвердости проводился с учетом масштабного фактора.

Согласно расчету по программе TRIM, проективный пробег ионов Kr⁺ в алюминиевой матрице составляет 28 мкм в приповерхностных слоях

потери энергии ионов в упругих взаимодействиях с атомами мишени dE/dx)_n=4,2эВ/нм⋅ион, в неупругих-(dE/dx)_e=11эВ/нм ион.

Для исследования структуры и элементного состава сплавов использовался растровый электронный микроскоп LEO 1565VP и энергодисперсионный рентгеновский анализатор RONTEC. Рентгеноструктурный анализ проводился на дифрактометре ДРОН-3 в медном излучении.

Экспериментальные результаты и их обсуждение

Исходное структурно-фазовое состояние сплавов (рис. 1, а) соответствует наличию стабильной θ -фазы (CuAl₂) в виде сферических выделений со средним размером поперечника d-1 мкм и пластинчатых (d-4... 7 мкм). Согласно [6-8],

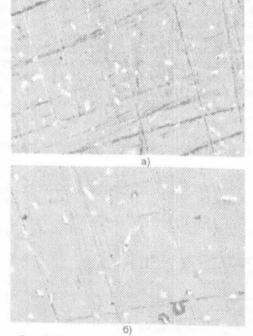


Рис. 1. Микроструктура сплава Al-4вес. %Cu (а — неимплантированный, $6 - 10^{14}$ Kr^{+}/cm^{2})

образование θ -фазы возможно как независимо из α -твердого раствора, так и ее рост рядом с θ '-фазой [$(001)_{\rm A}$] $(001)_{\rm A}$] или внутри нее. Вероятно, что равновесные включения, имеющие сфериче-

скую форму, выделились непосредственно из атвердого раствора $(\alpha \to \theta)$, а пластинчатые образовались путем перехода $\alpha \to \theta' \to \theta$ (включения θ' -фазы могли появиться в процессе достижения закаленными образцами температуры отжига, поскольку образцы массивные, а распад пересыщенного твердого раствора происходит интенсивно даже при комнатной температуре). Наличие θ -фазы в отожженных образцах подтверждают и результаты фазового рентгеноанализа (рис. 2, а).

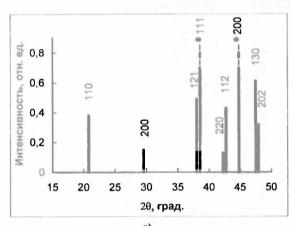


Рис. 2. Штрих-рентгенограммы сплава Al-4 вес. % Си до (а) и после имплантации 10¹⁴ Kr*/см² (б) (● -Al, остальное - CuAl₂)

При имплантации происходит частичное растворение θ -фазы, которое является результатом динамических перестроек при попадании каскада соударений в выделение [9, 10]. Как следует из рис. 1, б и данных, приведенных в таблице, суммарная плотность и объемная доля выделений с ростом дозы имплантации уменьшается. О растворении выделений свидетельствует и уменьшение интенсивности дифракционных линий θ -фазы в имплантированных образцах сплавов (рис. 2, б). Кроме того, данные рентгеноспектрального микроанализа показали, что концентрация меди в матрице сплавов повышается с ростом дозы имплантации.

Одновременно с растворением θ-фазы происходит и ее рост. На рис. 3 представлено распределение по размерам пластинчатых включений

Таблица Относительное изменение микротвердости ($\Delta H/H|_{\Delta h=5 \text{мм}}$, %), суммарная плотность (ΣN_{V} , см $^{-3}$) и объемная доля (ΣV_{V} , %) включений CuAl₂

	в сплаве АІ-4	₽%Cu	
Доза	неимпл.	10 ¹³ Kr [*] /c м ²	10 ¹⁴ Kr ⁺ /cm ²
ДН/Н Дһ=5 ыкм	-	1,07	1,26
ΣΝν	2,2·10 ¹⁰	1,8·10 ¹⁰	1,3·10 ¹⁰
ΣV _v	4,0	3,8	3,4

0-фазы. В имплантированных образцах повышается относительный вклад выделений больших размеров, появляются включения с d~7-9 мкм.

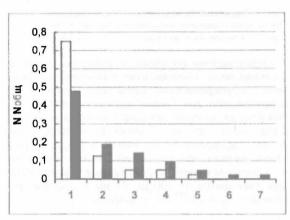


Рис. 3. Гистограмма распределения пластинчатых включений 0-фазы по размерам:
1 – 1,5-2,5; 2 – 2,5-3,5; 3 – 3,5-4,5; 4 – 4,5-5,5; 5 – 5,5-6,5; 6 – 6,5-7,5; 7 – 7,5-8,5 мкм.
□ - исходное состояние,
■ - после имплантации 10¹⁴ Kr*/см².

В термических условиях такой эффект обусловлен «выравнивающей» диффузией, когда в матричном растворе существует градиент концентраций легирующего элемента между выделениями разного размера. При ВЭИИ для доз 10¹³ и 10¹⁴ Кг⁺/см² в анализируемых приповерхностных слоях алюминия генерируется количество дефектов, которое соответствует равновесному при Т~500 К. Высокая концентрация радиационных дефектов и высокий уровень неупругих потерь энергии ионов способствуют интенсификации диффузионных процессов, что обуславливает наблюдаемое изменение размеров 0-фазы.

Как следует из дозовой зависимости микротвердости (рис. 4), ВЭИИ вызывает упрочнение сплава, причем с ростом дозы имплантации относительное изменение микротвердости увеличивается (табл.), причем при 10¹⁴ Кг⁺/см² этот эффект более значителен.

Растворение θ -фазы, приводящее к пересыщению твердого α -раствора атомами меди, и рост включений являются конкурирующими процессами, ответственными за изменение прочностных свойств сплавов: первый приводит к их упрочнению, второй - к разупрочнению. При используемых нами режимах имплантации превалирует эффект растворения второй фазы.

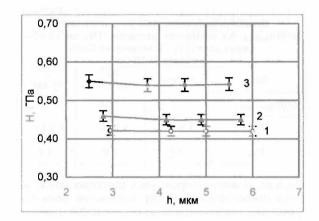


Рис. 4. Зависимость изменения микротвердости от глубины проникновения индентора в сплаве Al-4вес.%Си до (1) и после имплантации 10¹³ (2) и 10¹⁺ Kr⁺/cм² (3)

Пересыщение матричного твердого раствора атомами меди способствует развитию радиационно-стимулированных процессов старения с образованием зон Гинье-Престона, наличие полей упругих напряжений вокруг которых приводит к упрочнению сплава. Анализ физического уширения β дифракционных линий α -твердого раствора показал, что уширение обусловлено главным образом измельчением блоков, размер которых изменяется от 100 до 77 нм в имплантированных до дозы 10^{14} см⁻² образцах.

Заключение

При имплантации ионов криптона с энергией 245 МэВ до доз 10¹³ и 10¹⁴ см ⁻ в сплав Al-4 вес. % Си с включениями равновесной θ-фазы наблюдается частичное растворение включений (уменьшение плотности и объемной доли включений), что приводит к пересыщению матричного твердого раствора атомами меди. Радиационностимулированные процессы старения обуславливают упрочнение сплава.

Список литературы

- Анищик В.М., Жукова С.И. Васильева Л.А.// ФХОМ. - 1998. - №. 6. – С. 9.
- 2. Анищик В.М., Жукова С.И. Поляк Н.И.// ФХОМ. -1999. - № 6. – С. 9.
- Anishchik V.M., Zhukova S.I., Didyk A.Yu. et al.// Plasma physics and plasma technology. Minsk. - 2000.
- V II. Р. 413. 4. Анищик В.М., Жукова С.И. В. и др.// ФХОМ. - 2001. -№ 5. – С. 37.
- 5. Поляк Н.И. // Вестник БГУ. 2003. № 2. С. 100.
- Мондольфо Л.Ф. / Структура и свойства алюминиевых сплавов. Москва: Металлургия, 1979. – 639
- Беляев А.И. и др./Металловедение алюминия и его сплавов. Москва: Металлургия, 1983. – 280 с.
- Новые электронномикроскопические исследования / Под ред. Бернштейна М.Л. и Скакова Ю.А. Москва: Металлуогиздат. 1961. - 216 с.
- ва: Металлургиздат, 1961. 216 с. 9. *Саварадзе В.В., Колосков В.М., Шабашов А.В. и др.* // Письма в ЖТФ. – 2001. - № 6. – С. 26.
- 10. *Ибрагимов Ш.Ш., Кирсанов В.В.* / В кн.: Реакторное материаловедение. Москва: ЦНИИатоминформ, 1978. Т. 1. 340 с.

THE EFFECT OF HIGH ENERGY ION IMPLANTATION ON THE STRUCTURAL-PHASE STABILITY OF AI-4 wt.% Cu ALLOY

S.I.Zhukova, N.I.Polyak
The Belarussian State University, Fr.Scoryna Ave. 4, 220050, Minsk, phone: +375 17-209-54-80
e-mail: poliak@bsu.by

The effect of 245 MeV krypton ions implantation on the structural-phase state of Al-4 wt.% Cu alloy was investigated. It was shown that implantation with the dose of 10¹³ and 10¹⁴ Kr/cm² resulted in the decrease of the ⊚-phase inclusions density and in the change of their size. Hardening observed during implantation is the consequence of the hard solution enrichment by copper atoms and radiation-stimulated processes.